【題目】兩個直角三角形如圖放置,則∠BFE與∠CAF的度數(shù)之比等于( )
A.8
B.9
C.10
D.11
【答案】B
【解析】解:∵在Rt△ADE中,∠E=45°,∠D=90°,
∴∠DAE=90°-∠E=45°,
∵在Rt△ABC中,∠C=30°,∠ABC=90°,
∴∠BAC=90°-∠C=60°,
∴∠D=∠ABC,∠FAC=∠BAC-∠BAE=60°-45°=15°,
∴BC∥DE,
∴∠BFE+∠E=180°,
∴∠BFE=135°,
∴∠BFE:∠CAF=135°:15°=9.
故答案為:B.
先根據(jù)圖形易證明BC∥DE,根據(jù)平行線的性質(zhì)求出∠BFE和∠AFE的度數(shù),再根據(jù)三角形的外角性質(zhì)或根據(jù)∠FAC=∠BAC-∠BAE,得出∠CAF的度數(shù),然后就可求出∠BFE與∠CAF的度數(shù)之比。
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點(3,﹣2)關(guān)于原點對稱點的坐標是( )
A.(3,2)
B.(﹣3,﹣2)
C.(﹣3,2)
D.(3,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABO中,AB⊥OB,OB=,AB=1,把△ABO繞點O旋轉(zhuǎn)150°后得到△A1B1O,則點A1的坐標為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,點O是AC與BD的交點,過點O的直線與BA、DC的延長線分別交于點E、F.
(1)求證:△AOE≌△COF;
(2)請連接EC、AF,則EF與AC滿足什么條件時,四邊形AECF是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對花木的需求量逐年提高.某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤與投資量成正比例關(guān)系,如圖(1)所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖(2)所示(注:利潤與投資量的單位:萬元)
(1)分別求出利潤與關(guān)于投資量的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊△ABC中,點D是BC邊的中點,點P為AB 邊上的一個動點,設(shè)AP= ,PD= ,若與之間的函數(shù)關(guān)系的圖象如圖2所示,則等邊△ABC的面積為( )
A. 4 B. C. 12 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com