精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,AC=BC,AB=8,點(diǎn)D為AB的中點(diǎn),若直角MDN繞點(diǎn)D旋轉(zhuǎn),分別交AC于點(diǎn)E,交BC于點(diǎn)M,則下列說(shuō)法正確的有(  )
①AE=CF;②EC+CF=4
2
;③DE=DF;④若△ECF的面積為一個(gè)定值,則EF的長(zhǎng)也是一個(gè)定值.
A、①②B、①③
C、①②③D、①②③④
分析:①如果連接CD,可證△ADE≌△CDF,得出AE=CF;
②由①知,EC+CF=EC+AE=AC,而AC為等腰直角△ABC的直角邊,由于斜邊AB=8,由勾股定理可求出AC=BC=4
2

③由①知DE=DF;
④∵△ECF的面積=
1
2
×CE×CF,如果這是一個(gè)定值,則CE•CF是一個(gè)定值,又EC+CF=4
2
,從而可唯一確定EC與EF的值,由勾股定理知EF的長(zhǎng)也是一個(gè)定值.
解答:精英家教網(wǎng)解:①連接CD.
∵在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)D為AB的中點(diǎn),
∴CD⊥AB,CD=AD=DB,
在△ADE與△CDF中,∠A=DCF=45°,AD=CD,∠ADE=∠CDF,
∴△ADE≌△CDF,
∴AE=CF.說(shuō)法正確;
②∵在Rt△ABC中,∠C=90°,AC=BC,AB=8,
∴AC=BC=4
2

由①知AE=CF,
∴EC+CF=EC+AE=AC=4
2
.說(shuō)法正確;
③由①知△ADE≌△CDF,
∴DE=DF.說(shuō)法正確;
④∵△ECF的面積=
1
2
×CE×CF,如果這是一個(gè)定值,則CE•CF是一個(gè)定值,
又∵EC+CF=4
2
,
∴可唯一確定EC與EF的值,
再由勾股定理知EF的長(zhǎng)也是一個(gè)定值,說(shuō)法正確.
故選D.
點(diǎn)評(píng):本題綜合考查了等腰直角三角形的性質(zhì),全等三角形的判定及方程的思想,有一定難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案