4.若最簡二次根式$\sqrt{7a+b}$與$\root{b+3}{6a-b}$可合并,則ab的值為( 。
A.2B.-2C.-1D.1

分析 根據(jù)可以合并判斷出兩個二次根式是同類二次根式,然后列方程組求解得到a、b的值,再相乘計算即可得解.

解答 解:∵最簡二次根式$\sqrt{7a+b}$與$\root{b+3}{6a-b}$可合并,
∴$\sqrt{7a+b}$與$\root{b+3}{6a-b}$是同類二次根式,
∴$\left\{\begin{array}{l}{b+3=2}\\{7a+b=6a-b}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=2}\\{b=-1}\end{array}\right.$,
∴ab=2×(-1)=-2.
故選B.

點評 此題主要考查了同類二次根式的定義,即:二次根式化成最簡二次根式后,被開方數(shù)相同的二次根式叫做同類二次根式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.方程5x+2y=-9與下列方程構(gòu)成的方程組的解為$\left\{\begin{array}{l}{x=-2}\\{y=\frac{1}{2}}\end{array}\right.$的是(  )
A.x+2y=1B.5x+4y=-3C.3x-4y=-8D.3x+2y=-8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求下列各式的值:
(1)x2+2xy+y2
(2)x2-y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知正方形ABCD的邊長為1,P是對角線AC上任意一點,E為AD上的點,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN;
(3)若點P在線段AC上移動,其他不變,設(shè)PC=x,AE=y,求y關(guān)于x的解析式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.小德從家里到學(xué)校的路是一段平路和一段下坡路,假設(shè)他始終保持平路每分鐘走60米,下坡路每分鐘走80米,上坡路每分鐘走40米,從家里到學(xué)校需10分鐘,從學(xué)校到家里需15分鐘.請問小華家離學(xué)校多遠(yuǎn)?若設(shè)小德從家里到學(xué)校的平路是x米,下坡路y米,根據(jù)題意列方程組為( 。
A.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=15}\\{\frac{y}{40}+\frac{x}{60}=10}\end{array}\right.$B.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{80}+\frac{x}{40}=15}\end{array}\right.$
C.$\left\{\begin{array}{l}{\frac{x}{60}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$D.$\left\{\begin{array}{l}{\frac{x}{40}+\frac{y}{80}=10}\\{\frac{y}{40}+\frac{x}{60}=15}\end{array}\right.$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.如圖,正方形ABCD的面積是2,E,F(xiàn),P分別是AB,BC,AC上的動點,PE+PF的最小值等于$\sqrt{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.某校為了解學(xué)生每周課外閱讀時間的情況,對3000名學(xué)生采用隨機抽樣的方式進(jìn)行了問卷調(diào)查,調(diào)查結(jié)果分為“2小時以內(nèi)”,“2小時~3小時”,“3小時~4小時”和“4個小時以上”四個等級,分別用A、B、C、D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:
(1)x=30,樣本容量是400;
(2)將不完整的條形統(tǒng)計圖補充完整;
(3)請估計該校3600學(xué)生中每周課外閱讀時間在“2個小時以上”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.計算${({-2})^3}+{({\sqrt{3}-1})^0}$的結(jié)果是-7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.下列計算正確的是( 。
A.x5•x5=2x5B.a3+a2=a5C.(a2b)3=a8b3D.(-bc)4÷(-bc)2=b2c2

查看答案和解析>>

同步練習(xí)冊答案