(2010•仙桃)如圖,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于點C,AC⊥CB交BE于點A,△ABC的外接圓的半徑為r.
(1)若∠E=30°,求證:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的長.

【答案】分析:(1)取AB中點O,由題意得△ABC是Rt△,O是外接圓心,連接CO,可證得OC∥DB,則,即OC•DE=CE•BD;作CF⊥BE,然后證得∠CBE=∠E=30°,根據(jù)等角對等邊的性質(zhì)可得CE=BC,則可得BC•BD=r•ED;
(2)根據(jù)勾股定理求出BE,設CE=x,則BC=x,在Rt△BCD中,根據(jù)勾股定理求出x,再推得CE為圓的切線,利用切割線定理求出AE的值.
解答:(1)證明:取AB中點O,△ABC是Rt△,AB是斜邊,O是外接圓心,連接CO,
∴BO=CO,∠BCO=∠OBC,
∵BC是∠DBE平分線,
∴∠DBC=∠CBA,
∴∠OCB=∠DBC,
∴OC∥DB,(內(nèi)錯角相等,兩直線平行),
,把比例式化為乘積式得BD•CE=DE•OC,
∵OC=r,
∴BD•CE=DE•r.
∵∠D=90°,∠E=30°,
∴∠DBE=60°,
∴∠CBE=∠DBE=30°,
∴∠CBE=∠E,
∴CE=BC,
∴BC•BD=r•ED.

(2)解:BD=3,DE=4,根據(jù)勾股定理,BE=5,
設圓的半徑長是r,則OC=OA=r,
∵OC∥DB,
∴△OCE∽BDE,
==,即==
解得:OE=r,CE=r.
CH==r,
∵BC平分∠DBE交DE于點C,則△BDC≌△BHC,
∴BH=BD=3,
則HE=2.
∴CD=CH=r.
在直角△CHE中,根據(jù)勾股定理得:CH2+EH2=CE2,
即(r)2+22=(r)2,解得:r=,
則AE=BE-2r=5-=
點評:本題考查的是切割線定理,切線的性質(zhì)定理,勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(04)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標;若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省江漢油田中考數(shù)學試卷(解析版) 題型:解答題

(2010•仙桃)如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標;若不存在,請說明理由;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省江漢油田中考數(shù)學試卷(解析版) 題型:填空題

(2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

查看答案和解析>>

同步練習冊答案