精英家教網 > 初中數學 > 題目詳情

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB為邊向外作等邊△ACD、等邊△ABE,EF⊥AB,垂足為F,連接DF,當= 時,四邊形ADFE是平行四邊形.

【答案】
【解析】解:當=時,四邊形ADFE是平行四邊形.
理由:∵=,
∴∠CAB=30°,
∵△ABE為等邊三角形,EF⊥AB,
∴EF為∠BEA的平分線,∠AEB=60°,AE=AB,
∴∠FEA=30°,又∠BAC=30°,
∴∠FEA=∠BAC,
在△ABC和△EAF中,
,
∴△ABC≌△EAF(AAS);
∵∠BAC=30°,∠DAC=60°,
∴∠DAB=90°,即DA⊥AB,
∵EF⊥AB,
∴AD∥EF,
∵△ABC≌△EAF,
∴EF=AC=AD,
∴四邊形ADFE是平行四邊形.
故答案為:

由三角形ABE為等邊三角形,EF垂直于AB,利用三線合一得到EF為角平分線,得到∠AEF=30°,進而確定∠BAC=∠AEF,再由一對直 角相等,及AE=AB,利用AAS即可得證△ABC≌△EAF;由∠BAC與∠DAC度數之和為90°,得到DA垂直于AB,而EF垂直于AB,得到EF 與AD平行,再由全等得到EF=AC,而AC=AD,可得出一組對邊平行且相等,即可得證.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,A、B是圓O上的兩點,∠AOB=120°,C是AB弧的中點.

(1)求證:AB平分∠OAC;
(2)延長OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,頂點C的坐標為(﹣ ,3),反比例函數y= 的圖象與菱形對角線AO交于D點,連接BD,當BD⊥x軸時,k的值是(
A.4
B.﹣4
C.2
D.﹣2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下列圖形規(guī)律:當n= 時,圖形“●”的個數和“△”的個數相等.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數關系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.

(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A(1﹣,1+)在雙曲線y=(x<0)上.

(1)求k的值;
(2)在y軸上取點B(0,1),為雙曲線上是否存在點D,使得以AB,AD為鄰邊的平行四邊形ABCD的頂點C在x軸的負半軸上?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點A1 , A2依次在y=(x>0)的圖象上,點B1 , B2依次在x軸的正半軸上.若△A1OB1 , △A2B1B2均為等邊三角形,則點B2的坐標為 .

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,則CD的長為( 。

A.4
B.7
C.3
D.12

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育館計劃從一家體育用品商店一次性購買若干個氣排球和籃球(每個氣排球的價格都相同,每個籃球的價格都相同).經洽談,購買1個氣排球和2個籃球共需210元;購買2個氣排球和3個籃球共需340元.
(1)每個氣排球和每個籃球的價格各是多少元?
(2)該體育館決定從這家體育用品商店一次性購買氣排球和籃球共50個,總費用不超過3200元,且購買氣排球的個數少于30個,應選擇哪種購買方案可使總費用最低?最低費用是多少元?

查看答案和解析>>

同步練習冊答案