【題目】已知:關(guān)于x的一元二次方程:(m﹣1)x2+(m﹣2)x﹣1=0(m為實數(shù)).
(1)若方程有兩個不相等的實數(shù)根,求m的取值范圍;
(2)若是此方程的實數(shù)根,拋物線y=(m﹣1)x2+(m﹣2)x﹣1與x軸交于A、B,拋物線的頂點為C,求△ABC的面積.
【答案】(1)m的取值范圍是m≠0且m≠1;(2)S△ABC=.
【解析】試題分析:(1)根據(jù)方程有兩個不相等的實數(shù)根可知△>0,再由一元二次方程的定義得出m≠1,由此可得出結(jié)論;
(2)根據(jù)是此方程的實數(shù)根可得出m的值,故可得出頂點C的坐標(biāo),求出A、B兩點的坐標(biāo),利用三角形的面積公式即可得出結(jié)論.
試題解析:(1)此方程的判別式△=
∵方程有兩個不相等的實數(shù)根,
∴.
∵,
∴的取值范圍是.
(2)是此方程的實數(shù)根,
,
解此方程得: .
∴拋物線為,
化頂點式: ,
頂點
令, 得: ,
.
得,
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在兩面墻之間有一個底端在A點的梯子,當(dāng)它靠在一側(cè)墻上時,梯子的頂端在B點;當(dāng)它靠在另一側(cè)墻上時,梯子的頂端在D點.已知∠BAC=60°,∠DAE=45°.點D到地面的垂直距離,求點B到地面的垂直距離BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABC中,AB=AC=4,cosC=.
(1)動手操作:利用尺規(guī)作以AC為直徑的⊙O,并標(biāo)出⊙O與AB的交點D,與BC的交點E(保留作圖痕跡,不寫作法).
(2)綜合應(yīng)用:在你所作的圓中,求證: ;
(3)求△BDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形的一個內(nèi)角是50°,則另外兩個角的度數(shù)分別是( )
A. 65°,65°B. 50°,80°C. 50°,50°D. 65°,65°或50°,80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,且其中一個等腰三角形的底角是另一個等腰三角形底角的2倍,我們把這條對角線叫做這個四邊形的黃金線,這個四邊形叫做黃金四邊形.
(1)如圖1,在四邊形ABCD中,AB=AD=DC,對角線AC,BD都是黃金線,且AB<AC,CD<BD,求四邊形ABCD各個內(nèi)角的度數(shù);
(2)如圖2,點B是弧AC的中點,請在⊙O上找出所有的點D,使四邊形ABCD的對角線AC是黃金線(要求:保留作圖痕跡);
(3)在黃金四邊形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ ABC的角A,B,C所對邊分別為a,b,c,點O是△ABC的外心,OD⊥BD于D,OE⊥AC于E,OF⊥AB于F,則OD∶OE∶OF為( )
A. a∶b∶c B. :: C. sinA∶sinB∶sinC D. cosA∶cosB∶cosC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形CEFG,連結(jié)AF交BC于點O,點P是AF的中點,過點P作PH⊥DG于H,CD=2,CG=1.
(1)如圖1,點D、C、G在同一直線上,點E在BC邊上,求PH的長;
(2)把正方形CEFG繞著點C逆時針旋轉(zhuǎn)α(0°<α<180°)
①如圖2,當(dāng)點E落在AF上時,求CO的長;
②如圖3,當(dāng)DG=時,求PH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com