如圖,動(dòng)點(diǎn)M、N分別在直線AB與CD上,且AB∥CD,∠BMN與∠MND的角平分線相交于點(diǎn)P,若以MN為直徑作⊙O,則點(diǎn)P與⊙O的位置關(guān)系是


  1. A.
    點(diǎn)P在⊙O外
  2. B.
    點(diǎn)P在⊙O內(nèi)
  3. C.
    點(diǎn)P在⊙O上
  4. D.
    以上都有可能
C
分析:先根據(jù)平行線的性質(zhì)得出∠BMN+∠MND=180°,再由角平分線的性質(zhì)可得出∠PMN=∠BMN,∠PNM=∠MND,故可知∠PMN+∠PNM=90°,由三角形的內(nèi)角和是180°得出∠MPN=90°,再由直角三角形斜邊上的中線等于斜邊的一半得出OP=MN,進(jìn)而根據(jù)點(diǎn)與圓的位置關(guān)系即可得出結(jié)論.
解答:∵AB∥CD,
∴∠BMN+∠MND=180°,
∵∠BMN與∠MND的平分線相交于點(diǎn)P,
∴∠PMN=∠BMN,∠PNM=∠MND,
∴∠PMN+∠PNM=90°,
∴∠MPN=180°-(∠PMN+∠PNM)=180°-90°=90°,
∴以MN為直徑作⊙O時(shí),OP=MN=⊙O的半徑,
∴點(diǎn)P在⊙O上.
故選C.
點(diǎn)評(píng):本題考查的是平行線的性質(zhì)、角平分線的定義、三角形內(nèi)角和定理、直角三角形的性質(zhì)及點(diǎn)與圓的位置關(guān)系,根據(jù)條件得到OP=MN是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•晉江市質(zhì)檢)如圖,動(dòng)點(diǎn)M、N分別在直線AB與CD上,且AB∥CD,∠BMN與∠MND的角平分線相交于點(diǎn)P,若以MN為直徑作⊙O,則點(diǎn)P與⊙O的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=a(x-m)2與y2關(guān)于y軸對(duì)稱,頂點(diǎn)分別為B、A,y1與y軸的交點(diǎn)為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關(guān)系式;
(2)如圖,動(dòng)點(diǎn)Q、M分別在y1和y2上,N、P在x軸上,構(gòu)成矩形MNPQ,當(dāng)a為1時(shí),請(qǐng)問:
①Q(mào)點(diǎn)坐標(biāo)是多少時(shí),矩形MNPQ的周長最短?
②若E為MQ與y軸的交點(diǎn),是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請(qǐng)直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市江干區(qū)九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與y2關(guān)于y軸對(duì)稱,頂點(diǎn)分別為B、A,y1與y軸的交點(diǎn)為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關(guān)系式;
(2)如圖,動(dòng)點(diǎn)Q、M分別在y1和y2上,N、P在x軸上,構(gòu)成矩形MNPQ,當(dāng)a為1時(shí),請(qǐng)問:
①Q(mào)點(diǎn)坐標(biāo)是多少時(shí),矩形MNPQ的周長最短?
②若E為MQ與y軸的交點(diǎn),是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請(qǐng)直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市中考數(shù)學(xué)模擬試卷(21)(解析版) 題型:解答題

如圖,拋物線與y2關(guān)于y軸對(duì)稱,頂點(diǎn)分別為B、A,y1與y軸的交點(diǎn)為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關(guān)系式;
(2)如圖,動(dòng)點(diǎn)Q、M分別在y1和y2上,N、P在x軸上,構(gòu)成矩形MNPQ,當(dāng)a為1時(shí),請(qǐng)問:
①Q(mào)點(diǎn)坐標(biāo)是多少時(shí),矩形MNPQ的周長最短?
②若E為MQ與y軸的交點(diǎn),是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請(qǐng)直接寫出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇泰州高港實(shí)驗(yàn)學(xué)校八年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知矩形ABCD,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.

(1)如圖①,連接AF、CE,求證四邊形AFCE是菱形;

(2)求AF的長;

(3)如圖②,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周,即點(diǎn)P自停止,點(diǎn)Q自停止,在運(yùn)動(dòng)過程中:已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案