【題目】解方程
(1)先化簡:(1﹣ ) ,再從1,2,3中選取的一個合適的數(shù)代入求值.
(2)求不等式組 的整數(shù)解.
【答案】
(1)解:原式=
= ,
當x=2時,原式=﹣2;
(2)解: 由①得,x≥﹣1,由②得,x<1,故不等式組的解集為:﹣1≤x<1,
所以其整數(shù)解為:﹣1,0.
【解析】(1)先算括號里面的,再算乘法,最后選取合適的x的值代入進行計算即可;(2)分別求出各不等式的解集,再求出其公共解集,找出x的整數(shù)解即可.
【考點精析】通過靈活運用一元一次不等式組的解法和一元一次不等式組的整數(shù)解,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解)即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),若點Q的坐標為(x,|x﹣y|),則稱點Q為點P的“關聯(lián)點”.
(1)請直接寫出點(2,2)的“關聯(lián)點”的坐標;
(2)如果點P在函數(shù)y=x﹣1的圖像上,其“關聯(lián)點”Q與點P重合,求點P的坐標;
(3)如果點M(m,n)的“關聯(lián)點”N在函數(shù)y=x2的圖像上,當0≤m≤2時,求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC與BD相交于點O,且BE∥AC,CE∥BD.
(1)求證:四邊形OBEC是矩形;
(2)若菱形ABCD的周長是4 ,tanα= ,求四邊形OBEC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,點E、F分別在AB、CD上,且AE=CF.
(1)求證:△ADE≌△CBF;
(2)若DF=BF,求證:四邊形DEBF為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某食品批發(fā)部準備用10000元從廠家購進一批出廠價分別為16元和20元的甲、乙兩種酸奶,然后將甲、乙兩種酸奶分別加價20%和25%向外銷售.如果設購進甲種酸奶為x(箱),全部售出這批酸奶所獲銷售利潤為y(元).
(1)求所獲銷售利潤y(元)與x(箱)之間的函數(shù)關系式;
(2)根據(jù)市場調(diào)查,甲、乙兩種酸奶在保質期內(nèi)銷售量都不超過300箱,那么食品批發(fā)部怎樣進貨獲利最大,最大銷售利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C(0,﹣ ),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側.
(1)求a的值及點A,B的坐標;
(2)當直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達式;
(3)當點P位于第二象限時,設PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明想測山高和索道的長度.他在B處仰望山頂A,測得仰角∠B=31°,再往山的方向(水平方向)前進80m至索道口C處,沿索道方向仰望山頂,測得仰角∠ACE=39°.
(1)求這座山的高度(小明的身高忽略不計);
(2)求索道AC的長(結果精確到0.1m).
(參考數(shù)據(jù):tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈ )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)場急需銨肥8噸,在該農(nóng)場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.
(1)根據(jù)圖象求出b關于a的函數(shù)解析式(包括自變量的取值范圍);
(2)若農(nóng)場到B公司的路程是農(nóng)場到A公司路程的2倍,農(nóng)場到A公司的路程為m千米,設農(nóng)場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數(shù)解析式(m為常數(shù)),并向農(nóng)場建議總費用最低的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com