【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是(
A.
B.
C.
D.

【答案】C
【解析】解:連接CD,交MN于E, ∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,

∴MN⊥CD,且CE=DE,
∴CD=2CE,
∵MN∥AB,
∴CD⊥AB,
∴△CMN∽△CAB,

∵在△CMN中,∠C=90°,MC=6,NC= ,
∴SCMN= CMCN= ×6×2 =6 ,
∴SCAB=4SCMN=4×6 =24
∴S四邊形MABN=SCAB﹣SCMN=24 ﹣6 =18
故選C.
【考點精析】利用翻折變換(折疊問題)對題目進行判斷即可得到答案,需要熟知折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為 的中點,P是直徑AB上一動點,則PC+PD的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解當?shù)貧鉁刈兓闆r,某研究小組記錄了寒假期間連續(xù)6天的最高氣溫,結(jié)果如下(單位:℃):﹣6,﹣3,x,2,﹣1,3,若這組數(shù)據(jù)的中位數(shù)是﹣1,在下列結(jié)論中:①方差是8;②極差是9;③眾數(shù)是﹣1;④平均數(shù)是﹣1,其中正確的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y= (x>0)的圖像經(jīng)過線段OA的端點A,O為原點,作AB⊥x軸于點B,點B的坐標為(2,0),tan∠AOB= ,將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)y= (x>0)的圖像恰好經(jīng)過DC的中點E.

(1)求k的值和直線AE的函數(shù)表達式;
(2)若直線AE與x軸交于點M、與y軸交于點N,請你探索線段AN與線段ME的大小關系,寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙M與x軸相交于A(2,0)、B(8,0),與y軸相切于點C,P是優(yōu)弧AB上的一點,則tan∠APB為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,∠AOB=60°,點B坐標為(2,0),線段OA的長為6.將△AOB繞點O逆時針旋轉(zhuǎn)60°后,點A落在點C處,點B落在點D處.

(1)請在圖中畫出△COD;
(2)求點A旋轉(zhuǎn)過程中所經(jīng)過的路程(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一個新的運算:a⊕b= ,則運算x⊕2的最小值為(
A.﹣3
B.﹣2
C.2
D.3

查看答案和解析>>

同步練習冊答案