精英家教網 > 初中數學 > 題目詳情

如圖,四邊形OABC為直角梯形,OA⊥CO,CB∥OA,OA=CO=4,BC=3.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AO于點P,連接AC交NP于Q,連接MQ、BQ.
(1)求△AQM的面積S與運動時間t的函數關系式;
(2)當t為何值時,S△BCQ:S△AQM=3:2?
(3)是否存在某一時刻t,使得△AQM為直角三角形?若存在,求出相應的t值,若不存在,說明理由.

解:(1)經過t秒時,NB=t,OM=2t,
則CN=3-t,AM=4-2t,
∵∠BCA=∠MAQ=45°,
∴QN=CN=3-t,
∴PQ=1+t,
∴S△AMQ=AM•PQ=(4-2t)(1+t)=-t2+t+2.

(2)由題意得,CN=NQ=3-t,QP=1+t,AM=4-2t,
∴S△BCQ=×3(3-t),S△AQM=(4-2t)(1+t),
又∵S△BCQ:S△AQM=3:2,即3(3-t):(4-2t)(1+t)=3:2,
解得:t=1,
即當t=1時,S△BCQ:S△AQM=3:2.

(3)存在.
設經過t秒時,NB=t,OM=2t,
則CN=3-t,AM=4-2t,
∴∠BCA=∠MAQ=45°,
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高,
∴PQ是底邊MA的中線,
∴PQ=AP=MA,
∴1+t=(4-2t),
解得:t=
②若∠QMA=90°,此時QM與QP重合,
∴QM=QP=MA,
∴1+t=4-2t
∴t=1.
分析:(1)經過t秒時可得NB=y,OM-2t.根據∠BCA=∠MAQ=45°推出QN=CN,PQ的值.再根據三角形面積公式求出S與t的函數關系式.
(2)用含t的式子先表示出S△BCQ,S△AQM,然后根據兩者之比為3:2可得出t的值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
點評:此題考查了直角梯形、直角三角形的性質及相似三角形的判定及性質,屬于綜合性較強的題目,對于此類動點型題目,首先要確定符合題意的條件下動點所在的位置,然后用時間t表示出有關線段的長度,進而建立關于線段的關系式,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運精英家教網動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標系中的正方形紙片.點O與坐標原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現將紙片折疊,使頂點C落精英家教網在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標;
(2)求折痕EF所在直線的解析式;
(3)設點P為直線EF上的點,是否存在這樣的點P,使得以P,F,G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當點E到達點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標;
(2)在(1)的條件下,設△OEF與四邊形OAMP重疊面積為S,求S與t的函數關系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標,若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數精英家教網是( 。
(1)直線OA的函數解析式為y=
4
3
x

(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標為(S-5,4)
(4)若點P在線段BC上時,P點的坐標為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案