【題目】某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.

(1)根據(jù)圖中所給信息填寫下表:

投中個數(shù)統(tǒng)計

平均數(shù)

中位數(shù)

眾數(shù)

A

   

8

   

B

7

   

7

(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.

【答案】(1)7,9,7;(2)應該選派B;

【解析】

(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;

(2)利用方差的意義分析得出答案.

1A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;

B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;

故答案為:7,9,7;

2= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;

= [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;

從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.

1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家出發(fā)沿一條筆直的公路騎自行車前往圖書館看書,他與圖書館之間的距離ykm)與出發(fā)時間th)之間的函數(shù)關系如圖1中線段AB所示,在小明出發(fā)的同時,小明的媽媽從圖書館借書結束,沿同一條公路騎電動車勻速回家,兩人之間的距離skm)與出發(fā)時間th)之間的函數(shù)關系式如圖2中折線段CDDEEF所示.

1)小明騎自行車的速度為   km/h、媽媽騎電動車的速度為   km/h;

2)解釋圖中點E的實際意義,并求出點E的坐標;

3)求當t為多少時,兩車之間的距離為18km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB3cm,BC5cm;,BE平分∠ABC,交AD于點E,交CD延長線于點F,則DE+DF的長度為_________. 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G, GB=GC.

(1)求證:四邊形ABCD是矩形;

(2)若GEF的面積為2.

求四邊形BCFE的面積;

四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點MP,N分別為DE,DC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MNBD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年3月,某集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.

評估成績

評定等級

頻數(shù)

A

2

B

b

C

15

D

6

根據(jù)以上信息解答下列問題:

(1)m,b的值;

(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;

(3)從評估成績不少于80分的連鎖店中,任選2家介紹營銷經(jīng)驗,用樹狀圖或列表法求其中至少有一家是A等級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),,垂足分別為,.點在線段上以的速度由點向點運動,同時點在射線上運動.它們運動的時間為(當點運動結束時,點運動隨之結束).

1)若點的運動速度與點的運動速度相等,當時,是否全等,并判斷此時線段和線段的位置關系,請分別說明理由;

2)如圖(2),若“”改為“”,點的運動速度為,其它條件不變,當點運動到何處時有全等,求出相應的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC是等邊三角形,點PBC上一動點(點P與點B、C不重合),過點PPMACABM,PNABACN,連接BN、CM

1)求證:PM+PNBC;

2)在點P的位置變化過程中,BNCM是否成立?試證明你的結論;

3)如圖②,作NDBCABD,則圖②成軸對稱圖形,類似地,請你在圖③中添加一條或幾條線段,使圖③成軸對稱圖形(畫出一種情形即可).

查看答案和解析>>

同步練習冊答案