【題目】關(guān)于x的方程x2-mx-1=0根的情況是( 。

A. 有兩個不相等的實數(shù)根B. 有兩個相等的實數(shù)根

C. 沒有實數(shù)根D. 不能確定

【答案】A.

【解析】

計算出方程的判別式為=(- m)2+4=m2+4,可知其大于0,可判斷出方程根的情況.

解:方程x2+mx-1=0的判別式為=m2+40,所以該方程有兩個不相等的實數(shù)根,
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,把點A(1,﹣5)向上平移3個單位后的坐標是( ).

A. (1,-2)B. (1,-8)C. (4-5)D. (-2,-5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣2,y1),B(3,y2)在一次函數(shù)y=﹣x﹣2的圖象上,則( )
A.y1>y2
B.y1<y2
C.y1≤y2
D.y1≥y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x﹣y=3,xy=1,則x2+y2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面運算正確的是(
A.7a2b﹣5a2b=2
B.x8÷x4=x2
C.(a﹣b)2=a2﹣b2
D.(2x23=8x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,圖形G的投影矩形定義如下:矩形的兩組對邊分別平行于x軸,y軸,圖形G的頂點在矩形的邊上或內(nèi)部,且矩形的面積最。O(shè)矩形的較長的邊與較短的邊的比為k,我們稱常數(shù)k為圖形G的投影比.如圖1,矩形ABCD為△DEF的投影矩形,其投影比

(1)如圖2,若點A(1,3),B(3,5),則△OAB投影比k的值為  

(2)已知點C(4,0),在函數(shù)y=2x﹣4(其中x<2)的圖象上有一點D,若△OCD的投影比k=2,求點D的坐標.

(3)已知點E(3,2),在直線y=x+1上有一點F(5,a)和一動點P,若△PEF的投影比1<k<2,則點P的橫坐標m的取值范圍  (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側(cè)),將直尺WXYZ與x軸負方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;

(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標;若不存在,請說明理由.

(3)將直尺以每秒2個單位的速度沿x軸向左平移,設(shè)平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(2,0)在拋物線y=﹣3x2+(k+3)x上,求此拋物線的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)七年級學(xué)生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,從該地區(qū)隨機抽取部分七年級學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名同學(xué)只能選擇其中一類節(jié)目),并調(diào)查得到的數(shù)據(jù)用下面的表和扇形圖來表示(表、圖都沒制作完成)

根據(jù)表、圖提供的信息,解決以下問題:

(1)計算出表中a、b的值;

(2)求扇形統(tǒng)計圖中表示“動畫”部分所對應(yīng)的扇形的圓心角度數(shù);

(3)若該地區(qū)七年級學(xué)生共有47500人,試估計該地區(qū)七年級學(xué)生中喜愛“新聞”類電視節(jié)目的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊答案