【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l.
①將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形△A’B’C’;
②畫出△DEF關(guān)于直線l對稱的三角形△D’E’F’;
③填空:∠C+∠E= .
【答案】①見解析;②見解析;③45°.
【解析】分析:(1)、將點A、B、C分別右移2個單位、下移2個單位得到其對應點,順次連接即可得;(2)、分別作出點D、E、F關(guān)于直線l的對稱點,順次連接即可得;(3)、連接A′F′,利用勾股定理逆定理證△A′C′F′為等腰直角三角形即可得.
詳解:(1)△A′B′C′即為所求;
(2)△D′E′F′即為所求;
(3)如圖,連接A′F′, ∵△ABC≌△A′B′C′、△DEF≌△D′E′F′,
∴∠C+∠E=∠A′C′B′+∠D′E′F′=∠A′C′F′,
∵A′C′=,A′F′=,C′F′=,
∴A′C′2+A′F′2=5+5=10=C′F′2, ∴△A′C′F′為等腰直角三角形,
∴∠C+∠E=∠A′C′F′=45°,
科目:初中數(shù)學 來源: 題型:
【題目】已知:用3輛A型車和1輛B型車裝滿貨物一次可運貨13噸;用1輛A型車和2輛B型車裝滿貨物一次可運貨11噸.某物流公司現(xiàn)有35噸貨物,計劃同時租用A型車輛,B型車輛,一次運完,且恰好每輛車都裝滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛B型車都裝滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設(shè)計租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢的租車方案,并求出最少租車費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當a=5時,方程組的解是;
②當x,y的值互為相反數(shù)時,a=20;
③不存在一個實數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(0,1),B(2,0),C(4,3).
(1)在坐標系中描出各點,畫出三角形ABC;
(2)求三角形ABC的面積;
(3)設(shè)點P在坐標軸上,且三角形ABP與三角形ABC的面積相等,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,△ABC中, BD平分∠ABC,且與△ABC的外角∠ACE的角平分線交于點D.
(1)若,,求∠D的度數(shù);
(2)若把∠A截去,得到四邊形MNCB,如圖②,猜想∠D、∠M、∠N的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于平面直角坐標系中的任意兩點P1(x1,y1),P2(x2,y2),我們把|x1-x2|+|y1-y2|叫做P1、P2兩點間的直角距離,記作d(P1,P2).
(1) 令P0(2,-3),O為坐標原點,則d(O,P0)= ;
(2)已知O為坐標原點,動點P(x,y)滿足d(O,P)=1,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標系中畫出所有符合條件的點P所組成的圖形;
(3)設(shè)P0(x0,y0)是一定點,Q(x,y)是直線y=ax+b上的動點,我們把d(P0,Q)的最小值叫做P0到直線y=ax+b的直角距離. 若P(a,-3)到直線y=x+1的直角距離為6,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長是a,BC=b,求△ACD的周長(用含a,b的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com