【題目】佳佳調(diào)査了七年級400名學(xué)生到校的方式,根據(jù)調(diào)查結(jié)果繪制出統(tǒng)計圖的一部分如圖:

1)補(bǔ)全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中表示步行的扇形圓心角的度數(shù);

3)估計在3000名學(xué)生中乘公交的學(xué)生人數(shù).

【答案】(1)見解析;(272°;(31800

【解析】

1)乘公交的學(xué)生數(shù)=400﹣步行人數(shù)﹣騎自行車人數(shù)﹣乘私車人數(shù);

2)先計算步行所占調(diào)查人數(shù)的比,再計算步行扇形圓心角的度數(shù);

3)先計算乘公交的學(xué)生占調(diào)查學(xué)生的百分比,再估計3000人中乘公交的人數(shù).

解:(1)乘公交的人數(shù)為:400802060240(人)

補(bǔ)全的條形圖如圖所示

2步行的扇形圓心角的度數(shù)為:

360°×72°

3)因為調(diào)查的七年級400名學(xué)生中,乘公交的學(xué)生有240人,

所以乘公交的學(xué)生占調(diào)查學(xué)生的百分比為: ×100%60%

所以3000名學(xué)生中乘公交的約為:3000×60%1800(人)

答:3000名學(xué)生中乘公交的學(xué)生有1800人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,滑動調(diào)節(jié)式遮陽傘的立柱垂直于地面為立柱上的滑動調(diào)節(jié)點,傘體的截面示意圖為,中點,,,,.當(dāng)點位于初始位置時,點重合(圖2).根據(jù)生活經(jīng)驗,當(dāng)太陽光線與垂直時,遮陽效果最佳.

(1)上午10:00時,太陽光線與地面的夾角為(圖3),為使遮陽效果最佳,點需從上調(diào)多少距離?(結(jié)果精確到

(2)中午12:00時,太陽光線與地面垂直(圖4),為使遮陽效果最佳,點在(1)的基礎(chǔ)上還需上調(diào)多少距離?(結(jié)果精確到

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標(biāo)分別為-1,3,則下列結(jié)論正確的個數(shù)有 ac<0;2a+b=0;4a+2b+c>0;對于任意x均有ax2+bxa+b

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x,點A1坐標(biāo)為(10),過點A1x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,,按此做法進(jìn)行下去,點A4的坐標(biāo)為______,點An______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點,點C是O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)和函數(shù)(m是常數(shù),且)的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點PA出發(fā),沿A→B→C→D的路線運動,到D停止;點QD點出發(fā),沿D→C→B→A路線運動,到A點停止.若P、Q兩點同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運動時間x(秒)的圖象.

(1)求出a值;

(2)設(shè)點P已行的路程為y1(cm),點Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運動時間x(秒)的關(guān)系式;

(3)P、Q兩點都在BC邊上,x為何值時P、Q兩點相距3cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=90°,ABAC,MBC邊的中點,MNBCAC于點N,動點P在線段BA上以每秒cm的速度由點B向點A運動.同時,動點Q在線段AC上由點N向點C運動,且始終保持MQMP.一個點到終點時兩個點同時停止運動,設(shè)運動的時間為t秒(t0).

(1)求證:△PBM∽△QNM.

(2)若∠ABC=60°,AB=4cm,

①求動點Q的運動速度;

②設(shè)△APQ的面積為S(cm2),求St的等量關(guān)系式(不必寫出t的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:

電影類型

第一類

第二類

第三類

第四類

第五類

第六類

電影部數(shù)

140

50

300

200

800

510

好評率

注:好評率是指一類電影中獲得好評的部數(shù)與該類電影的部數(shù)的比值.

如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評的第四類電影的概率是______;

電影公司為了增加投資回報,擬改變投資策略,這將導(dǎo)致不同類型電影的好評率發(fā)生變化假設(shè)表格中只有兩類電影的好評率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評率增加,哪類電影的好評率減少,可使改變投資策略后總的好評率達(dá)到最大?

答:______

查看答案和解析>>

同步練習(xí)冊答案