【題目】母親節(jié)前夕,某商店從廠家購進(jìn)AB兩種禮盒,已知A、B兩種禮盒的單價(jià)比為34,單價(jià)和為210元.

1)求A、B兩種禮盒的單價(jià)分別是多少元?

2)該商店購進(jìn)這兩種禮盒恰好用去9900元,且購進(jìn)A種禮盒最多36個(gè),B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進(jìn)貨方案?

3)根據(jù)市場(chǎng)行情,銷售一個(gè)A鐘禮盒可獲利12元,銷售一個(gè)B種禮盒可獲利18元.為奉獻(xiàn)愛心,該店主決定每售出一個(gè)B種禮盒,為愛心公益基金捐款m元,每個(gè)A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時(shí)店主獲利多少元?

【答案】(1)A種禮盒單價(jià)為90元,B種禮盒單價(jià)為120元;(2)見解析;(3)1320元.

【解析】

1)利用AB兩種禮盒的單價(jià)比為34,單價(jià)和為210元,得出等式求出即可;

2)利用兩種禮盒恰好用去9900元,結(jié)合(1)中所求,得出等式,利用兩種禮盒的數(shù)量關(guān)系求出即可;

3)首先表示出店主獲利,進(jìn)而利用wm關(guān)系得出符合題意的答案.

(1)設(shè)A種禮盒單價(jià)為3x元,B種禮盒單價(jià)為4x元,

則:3x+4x=210,

解得x=30,

所以A種禮盒單價(jià)為3×30=90元,

B種禮盒單價(jià)為4×30=120元.

(2)設(shè)A種禮盒購進(jìn)a個(gè),購進(jìn)B種禮盒b個(gè),

則:90a+120b=9900,

可列不等式組為:,

解得:30≤a≤36,

因?yàn)槎Y盒個(gè)數(shù)為整數(shù),所以符合的方案有2種,分別是:

第一種:A種禮盒30個(gè),B種禮盒60個(gè),

第二種:A種禮盒34個(gè),B種禮盒57個(gè).

(3)設(shè)該商店獲利w元,由(2)可知:w=12a+(18﹣m)b,a=110-

則w=(2﹣m)b+1320,

若使所有方案都獲利相同,則令2﹣m=0,得m=2,

此時(shí)店主獲利1320元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初二年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度與廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初二學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)圖中所給信息解答下列問題:

(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;

(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動(dòng)質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;

(3)請(qǐng)將頻數(shù)分布直方圖補(bǔ)充完整;

(4)如果全市有6000名初二學(xué)生,那么在試卷評(píng)講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,

(1)求OC的長及的值;

(2)設(shè)直線BC與y軸交于P點(diǎn),當(dāng)點(diǎn)C恰好在OP的垂直平分線上時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一張長方形紙片(如圖①),,將紙片折疊,使落在邊上,的對(duì)應(yīng)點(diǎn),折痕為(如圖②),再將長方形為折痕向右折疊,若點(diǎn)落在的三等分點(diǎn)上,則的長為(

A.8B.10C.810D.812

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我市某公司分兩次采購了一批大蒜,第一次花費(fèi)40萬元,第二次花費(fèi)60萬元,已知第一次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格上漲了500元,第二次采購時(shí)每噸大蒜的價(jià)格比去年的平均價(jià)格下降了500元,第二次采購的數(shù)量是第一次采購數(shù)量的兩倍.

1)試問去年每噸大蒜的平均價(jià)格是多少元?

2)該公司可將大蒜加工成蒜粉或蒜片,若單獨(dú)加工成蒜粉,每天可加工8噸大蒜,每噸大蒜獲利1000元;若單獨(dú)加工成蒜片,每天可加工12噸大蒜,每噸大蒜獲利600.為出口需要,所有采購的大蒜必須在30天內(nèi)加工完畢,且加工蒜粉的大蒜數(shù)量不少于加工蒜片的大蒜數(shù)量的一半.為獲得最大利潤,應(yīng)將多少噸大蒜加工成蒜粉?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料:思考的同學(xué)小斌在解決連比等式問題:已知正數(shù),,滿足,求的值時(shí),采用了引入?yún)?shù)法,將連比等式轉(zhuǎn)化為了三個(gè)等式,再利用等式的基本性質(zhì)求出參數(shù)的值.進(jìn)而得出,,之間的關(guān)系,從而解決問題.過程如下:

解;設(shè),則有:

,,,

將以上三個(gè)等式相加,得.

,都為正數(shù),

,即,.

.

仔細(xì)閱讀上述材料,解決下面的問題:

1)若正數(shù),滿足,求的值;

2)已知,,,互不相等,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)絡(luò)中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(-24)、B(-2,0)、C(-4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

1)畫出ABC關(guān)于原點(diǎn)O中心對(duì)稱圖形A1B1C1.

2)平移ABC,使點(diǎn)A移動(dòng)到點(diǎn)A2(02),畫出平移后的A2B2C2并寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=1,M,N分別是AD,BC邊的中點(diǎn),沿BQBCQ折疊,若點(diǎn)C恰好落在MN上的點(diǎn)P處,則PQ的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(新定義):AB、C 為數(shù)軸上三點(diǎn),若點(diǎn) C A 的距離是點(diǎn) C B 的距離的 3 倍,我們就稱點(diǎn)

C 是(A,B)的幸運(yùn)點(diǎn).

(特例感知):

1)如圖 1,點(diǎn) A 表示的數(shù)為﹣1,點(diǎn) B 表示的數(shù)為 3.表示 2 的點(diǎn) C 到點(diǎn) A 的距離是 3, 到點(diǎn) B 的距離是 1,那么點(diǎn) C 是(A,B)的幸運(yùn)點(diǎn).

①(B,A)的幸運(yùn)點(diǎn)表示的數(shù)是 A.﹣1; B.0 C.1; D.2

②試說明 A 是(C,E)的幸運(yùn)點(diǎn).

2)如圖 2,M、N 為數(shù)軸上兩點(diǎn),點(diǎn) M 所表示的數(shù)為﹣2,點(diǎn) N 所表示的數(shù)為 4,則(M,N)的幸點(diǎn)示的數(shù)為

(拓展應(yīng)用):

3)如圖 3,A、B 為數(shù)軸上兩點(diǎn),點(diǎn) A 所表示的數(shù)為﹣20,點(diǎn) B 所表示的數(shù)為 40.現(xiàn)有一只電子螞蟻 P 從點(diǎn) B 出發(fā),以 3 個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn) A 停止.當(dāng) t 為何值時(shí),P、A B 三個(gè)點(diǎn)中恰好有一個(gè)點(diǎn)為其余兩點(diǎn)的幸運(yùn)點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案