如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設運動時間為t(0<t<)秒.解答如下問題:
(1)當t為何值時,PQ∥BO?
(2)設△AQP的面積為S,
①求S與t之間的函數(shù)關系式,并求出S的最大值;
②若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2-x1,y2-y1)稱為“向量PQ”的坐標.當S取最大值時,求“向量PQ”的坐標.

【答案】分析:(1)如圖①所示,當PQ∥BO時,利用平分線分線段成比例定理,列線段比例式,求出t的值;
(2)①求S關系式的要點是求得△AQP的高,如圖②所示,過點P作過點P作PD⊥x軸于點D,構造平行線PD∥BO,由線段比例關系求得PD,從而S可求出.S與t之間的函數(shù)關系式是一個關于t的二次函數(shù),利用二次函數(shù)求極值的方法求出S的最大值;
②本問關鍵是求出點P、Q的坐標.當S取最大值時,可推出此時PD為△OAB的中位線,從而可求出點P的縱橫坐標,又易求Q點坐標,從而求得點P、Q的坐標;求得P、Q的坐標之后,代入“向量PQ”坐標的定義(x2-x1,y2-y1),即可求解.
解答:解:(1)∵A、B兩點的坐標分別是(8,0)、(0,6),則OB=6,OA=8,
∴AB===10.
如圖①,當PQ∥BO時,AQ=2t,BP=3t,則AP=10-3t.
∵PQ∥BO,
,即,
解得t=,
∴當t=秒時,PQ∥BO.

(2)由(1)知:OA=8,OB=6,AB=10.
①如圖②所示,過點P作PD⊥x軸于點D,則PD∥BO,
,即,解得PD=6-t.
S=AQ•PD=•2t•(6-t)=6t-t2=-(t-2+5,
∴S與t之間的函數(shù)關系式為:S=-(t-2+5(0<t<),
當t=秒時,S取得最大值,最大值為5(平方單位).
②如圖②所示,當S取最大值時,t=,
∴PD=6-t=3,
∴PD=BO,
又∵PD∥BO,
∴此時PD為△OAB的中位線,則OD=OA=4,
∴P(4,3).
又∵AQ=2t=,
∴OQ=OA-AQ=,∴Q(,0).
依題意,“向量PQ”的坐標為(-4,0-3),即(,-3).
∴當S取最大值時,“向量PQ”的坐標為(,-3).
點評:本題是典型的動點型問題,解題過程中,綜合利用了平行線分線段成比例定理(或相似三角形的判定與性質)、勾股定理、二次函數(shù)求極值及三角形中位線性質等知識點.第(2)②問中,給出了“向量PQ”的坐標的新定義,為題目增添了新意,不過同學們無須為此迷惑,求解過程依然是利用自己所熟悉的數(shù)學知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一次函數(shù)y=kx+b的圖象經過第一、二、三象限,且與反比例函數(shù)圖象相交于A,B兩點,與y軸交于點C,與x軸交于點D,OB=
5
.且點B橫坐標是點B縱坐標的2倍.
(1)求反比例函數(shù)的解析式;
(2)設點A橫坐標為m,△ABO面積為S,求S與m的函數(shù)關系式,并求出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

8、如圖,從城市A到城市B有三種不同的交通工具:汽車、火車、飛機,除去速度因素,坐飛機的時間最短是因為
兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、當你去看電影的時候,你想坐得離屏幕近一些,可是又不想為了看屏幕邊緣的鏡頭不停地轉動眼睛.如圖所示,點A、B分別為屏幕邊緣兩點,若你在P點,則視角為∠APB.如果你覺得電影院內P點是觀看的最佳位置,可是已經有人坐在那了,那么你會找到一個位置Q,使得在Q、P兩點有相同的視角嗎?請在圖中畫出來(保留畫圖痕跡,不寫畫法).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北一模)如圖,已知直線y=x+4與兩坐???軸分別交于A、B兩點,⊙C的圓心坐標為 (2,O),半徑為2,若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值和最大值分別是
8-2
2
和8+2
2
8-2
2
和8+2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

作圖題
(1)如圖1示,∠AOB內有兩點M,N,請你確定一點P,使點P到M,N的距離相等,且到OA,OB邊的距離也相等,在圖上標出它的位置.
(2)某班舉行文藝晚會,桌子擺成兩直線(如圖2中的AO,BO),AO桌面上擺滿桔子,BO桌面上擺滿糖果,坐在C處的學生小明先拿桔子再拿糖果,然后回到座位,請你幫他設計一條行走路線,使其所走的路程最短.

查看答案和解析>>

同步練習冊答案