已知拋物線經(jīng)過點(1,0),(-5,0),且頂點縱坐標為
9
2
,這個二次函數(shù)的解析式______.
∵點(1,0),(-5,0)是拋物線與x的兩交點,
∴拋物線對稱軸為直線x=-2,
∴拋物線的頂點坐標為(-2,
9
2
),
設拋物線的解析式為y=a(x+2)2+
9
2
,
將點(1,0)代入,得a(1+2)2+
9
2
=0,
解得a=-
1
2
,即y=-
1
2
(x+2)2+
9
2
,
∴所求二次函數(shù)解析式為y=-
1
2
x2-2x+
5
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,一次函數(shù)y=x+2的圖象分別交軸、軸于A、B兩點,O1為以OB為邊長的正方形OBCD的對角線的交點.兩動點P、Q同時從A點出發(fā)在四邊形ABCD上運動,其中動點P以每秒
2
個單位長度的速度沿A→B→A運動后停止,動點Q以每秒2個單位長度的速度沿A→O→D→C→B運動.AO1交于軸于點E,設P、Q運動的時間為t秒.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)求出E點的坐標和S△ABE的值;
(3)當Q點運動在折線AD→DC上時,是否存在某一時刻t(秒),使得S△ABE:S△APQ=4:3?若存在,請確定t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,二次函數(shù)y=ax2+bx-3(a,b是常數(shù))的圖象與x軸交于點A(-3,0)和點B(1,0),與y軸交于點C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一場足球比賽中,一球員從球門正前方10米處起腳射門,當球飛行的水平距離為6米時達到最高點,此時球高為3米.
(1)如圖建立直角坐標系,當球飛行的路線為一拋物線時,求此拋物線的解析式.
(2)已知球門高為2.44米,問此球能否射中球門(不計其它情況).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=4.現(xiàn)以O為坐標原點,OA所在直線為x軸,建立如圖所示的平面直角坐標系,點B在第一象限內.將Rt△OAB沿OB折疊后,點A落在第一象限內的點C處.
(1)求點C的坐標;
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運動,問:是否存在這樣的點P,使得⊙P與兩坐標軸都相切?若存在,請求出此時⊙P半徑R的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c(a≠0)與x軸、y軸分別相交于A(-1,0)、B(3,0)、C(0,3)三點,其頂點為D.(1)求:經(jīng)過A、B、C三點的拋物線的解析式;
(2)求四邊形ABDC的面積;
(3)試判斷△BCD與△COA是否相似?若相似寫出證明過程;若不相似,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(-
b
2a
,
4ac-b2
4a
)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

豎直向上發(fā)射的小球的高度h(m)關于運動時間t(s)的函數(shù)表達式為h=at2+bt,其圖象如圖所示,若小球在發(fā)射后第2秒與第6秒時的高度相等,則下列時刻中小球的高度最高的是( 。
A.第3秒B.第3.5秒C.第4.2秒D.第6.5秒

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,某小區(qū)要修建一塊矩形綠地,設矩形的長為x米,寬為y米,且x>y.
(1)如果用18米的建筑材料來修建綠地的邊框(即周長),求y與x的函數(shù)關系式,并求出x的取值范圍;
(2)現(xiàn)根據(jù)小區(qū)的規(guī)劃要求,所修建的矩形綠地面積必須是18平方米,在滿足(1)的條件下,問矩形的長和寬各為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線y=-
2
3
x2+
8
3
x上,矩形的頂點均為動點,且矩形在拋物線與x軸圍成的區(qū)域里.
(1)設點A的坐標為(x,y),試求矩形的周長p關于變量x的函數(shù)的解析式,并寫出x的取值范圍;
(2)是否存在這樣的矩形ABCD,它的周長p=9?試證明你的結論.

查看答案和解析>>

同步練習冊答案