【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長度是( 。
A.B.C.D.6
【答案】A
【解析】
先利用銳角三角函數(shù)求出AB和BC,由旋轉(zhuǎn)的性質(zhì)可得A1C=AC=4,B1C=BC=,∠A1CA=∠B1CB,分別證出△AA1C為等邊三角形、△B1CB為等邊三角形,即可求出A1B、BD和∠A1BD,最后利用勾股定理即可求出結(jié)論.
解:∵∠ACB=90°,∠ABC=30°,AC=4,
∴∠A=90°-∠ABC=60°,AB=2AC=8,BC=
由旋轉(zhuǎn)的性質(zhì)可得A1C=AC=4,B1C=BC=,∠A1CA=∠B1CB
∴△AA1C為等邊三角形
∴A1A=A1C=AC=4,∠A1CA=60°
∴A1B=AB-A1A=4,∠B1CB=60°
∴△B1CB為等邊三角形
∴B1B =B1C=,∠CBB1=60°
∴∠A1BD=∠ABC+∠CBB1=90°
∵點(diǎn)D為BB1的中點(diǎn)
∴BD= BB1=
在Rt△A1BD中,A1D=
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,把矩形沿對角線所在直線折疊,使點(diǎn)落在點(diǎn)處,交于點(diǎn),連接.
(1)求證:;
(2)求證:是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,中,,,點(diǎn)為上一點(diǎn),連接交于點(diǎn)F,過點(diǎn)作于點(diǎn),延長交于點(diǎn).
(1)如圖1,若點(diǎn)與點(diǎn)重合,且,求的長;
(2)如圖2,連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是的斜邊AB上一點(diǎn),以AE為直徑的與邊BC相切于點(diǎn)D,交邊AC于點(diǎn)F,連結(jié)AD.
(1)求證:AD平分.
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=1,點(diǎn)E、F分別在邊BC和CD上,AE=AF,∠EAF=60°,則CF的長是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于圓O,CD平分∠ACB交于圓O,過點(diǎn)D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是圓O的切線;
(2)連接AD,求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的直徑,弦于點(diǎn),點(diǎn)為上一點(diǎn),連接、、,交于點(diǎn).
(1)求證:;
(2)如圖2,連接,交于點(diǎn),若,求證:是等腰三角形;
(3)如圖3,在(2)的條件下,若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=5,AB=4,點(diǎn)E,F在直線AD上,且四邊形BCFE為菱形,若線段EF的中點(diǎn)為點(diǎn)M,則線段AM的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn)在上,,垂足為,,分別交延長線于點(diǎn).
(1)過點(diǎn)作直線,使得,判斷直線與的位置關(guān)系,并說理.
(2)若,,求的長.
(3)連接,探索線段與間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com