(2006•陜西)如圖,在Rt△ABC中,∠BAC=90°,E,F(xiàn)分別是BC,AC的中點(diǎn),延長(zhǎng)BA到點(diǎn)D,使AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長(zhǎng).

【答案】分析:(1)連接EF、AE,證四邊形AEFD是平行四邊形即可.
(2)注意應(yīng)用直角三角形斜邊上的中線等于斜邊的一半和平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等,求得AE長(zhǎng)即可.
解答:(1)證明:連接EF,AE.
∵點(diǎn)E,F(xiàn)分別為BC,AC的中點(diǎn),
∴EF∥AB,EF=AB.
又∵AD=AB,
∴EF=AD.
又∵EF∥AD,
∴四邊形AEFD是平行四邊形.
∴AF與DE互相平分.

(2)解:在Rt△ABC中,
∵E為BC的中點(diǎn),BC=4,
∴AE=BC=2.
又∵四邊形AEFD是平行四邊形,
∴DF=AE=2.
點(diǎn)評(píng):本題考查了平行四邊形的判定,有中點(diǎn)時(shí)需考慮運(yùn)用三角形的中位線定理或者直角三角形斜邊上的中線等于斜邊的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:選擇題

(2006•陜西)如圖,拋物線的函數(shù)表達(dá)式是( )

A.y=x2-x+2
B.y=x2+x+2
C.y=-x2-x+2
D.y=-x2+x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•陜西)如圖,矩形ABCG(AB<BC)與矩形CDEF全等,點(diǎn)B,C,D在同一條直線上,∠APE的頂點(diǎn)P在線段BD上移動(dòng),使∠APE為直角的點(diǎn)P的個(gè)數(shù)是( )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年陜西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2006•陜西)如圖,拋物線的函數(shù)表達(dá)式是( )

A.y=x2-x+2
B.y=x2+x+2
C.y=-x2-x+2
D.y=-x2+x+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年陜西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•陜西)如圖,O為平行四邊形ABCD的對(duì)角線AC的中點(diǎn),過(guò)點(diǎn)O作一條直線分別與AB,CD交于點(diǎn)M,N,點(diǎn)E,F(xiàn)在直線MN上,且OE=OF.
(1)圖中共有幾對(duì)全等三角形,請(qǐng)把它們都寫(xiě)出來(lái);
(2)求證:∠MAE=∠NCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年陜西省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•陜西)如圖,小河對(duì)岸有一座塔AB.分別在點(diǎn)D、C處測(cè)得塔尖點(diǎn)A處的仰角為∠1=28°、∠2=41°,且CD=25米.則塔的高度AB約為    米(精確到0.1米).
(可用計(jì)算器求,也可用下列參考數(shù)據(jù)求:
sin28°≈0.4659,sin41°≈0.6561
cos28°≈0.8829,cos41°≈0.7547
tan28°≈0.5317,tan41°≈0.8693).

查看答案和解析>>

同步練習(xí)冊(cè)答案