精英家教網 > 初中數學 > 題目詳情

如圖取一張長方形的紙條,使長與寬的比是5:1,你能把它剪成五塊后拼出一個正方形嗎?如果能,請畫出草圖,若設長方形的邊長為a,求出所拼出的正方形的邊長.

答案:
解析:

如圖答2.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的
53
,若存在,寫出點K的坐標;若不存在,請說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源:精編教材全解 數學 九年級上冊 (配蘇科版) 蘇科版 題型:044

我們知道了菱形的性質,那想一想如何利用折紙、剪切的方法,既快又準確地剪出一個菱形的紙片?下面給出三種方法,

方法一:將一張長方形的紙橫對折,再豎對折,然后沿圖中的虛線剪下,打開即是菱形紙片.

方法二:如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分ABCD就是菱形.

方法三:將一張長方形紙對折,再在折痕上取任意長為底邊,剪一個等腰三角形,然后打開即是菱形(如圖).試說明你的理由.

查看答案和解析>>

科目:初中數學 來源:中學教材全解 七年級數學下 (北京師大版) 北京師大版 題型:059

讓我們一起來進行一個折紙游戲吧!如圖所示,取一張長方形的紙片ABCD,將其折疊,使D點與B點重合,EF為折痕,觀察圖形,圖中有全等的三角形嗎?如果有,請給出理由;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:022

如圖所示,取一張長方形的硬紙ABCD對折,MN是折痕,把面ABNM平攤在桌面上,另一個面CDMN不論怎樣改變位置,總有MN∥______,MN∥______,因此______∥______.

查看答案和解析>>

科目:初中數學 來源:2010年江蘇省鎮(zhèn)江市揚中市外國語學校中考數學一模試卷(解析版) 題型:解答題

綜合實踐
問題背景
某課外興趣小組在一次折紙活動中,折疊一張帶有條格的長方形紙片ABCD(如圖1),將點B分別與點A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對應條格所在直線的交點,用平滑的曲線順次連接各交點,得到一條曲線.
探索
如圖2,在平面直角坐標系xOy中,將長方形紙片ABCD的頂點B與原點O重合,BC邊放在x軸的正半軸上,AB=m,AD=n(m≤n),將紙片折疊,MN是折痕,使點B落在邊AD上的E處,過點E作EQ⊥BC,垂足為Q,交直線MN于點P,連接OP
(1)求證:四邊形OMEP是菱形;
(2)設點P坐標為(x,y),求y與x之間的函數關系式,并寫出自變量x的取值范圍.(用含m、n的式子表示)
運用
(3)將長方形紙片ABCD如圖3所示放置,AB=8,AD=12,將紙片折疊,當點B與點D重合時,折痕與DC的延長線交于點F.試問在這條折疊曲線上是否存在K,使得△KCF的面積是△KOC面積的,若存在,寫出點K的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案