【題目】在平面直角坐標系中,已知拋物線yx2+bx+c的對稱軸為x1,且其頂點在直線y=﹣2x2上.

1)求拋物線的頂點坐標;

2)求拋物線的解析式;

3)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;

4)當﹣1x4時,直接寫出y的取值范圍.

【答案】1)(1,﹣4);(2yx22x3;(3)詳見解析;(4)﹣4y5

【解析】

1)把x1代入y=﹣2x2即可得到結(jié)論;

2)把拋物線的頂點坐標為(1,﹣4)代入拋物線的解析式即可得到結(jié)論.

3)利用五點法畫出圖象即可;

4)根據(jù)圖象求得即可.

1)把x1代入y=﹣2x2得,y=﹣4,

∴拋物線的頂點坐標為(1,﹣4);

2)∵拋物線的頂點坐標為(1,﹣4);

∴拋物線的解析式為:y=(x124,

即拋物線的解析式為:yx22x3

3)列表:

x

-1

0

1

2

3

y

0

-3

-4

-3

0

描點,連線畫出圖象如圖:

4)當時 ,;

時 ,有最小值-4;

時 ,;

∴當﹣1x4時,y的取值范圍是﹣4y5

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點AB在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動當滾動一周回到原位置時,點C運動的路徑長為__ _

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O中,弦ABAC,∠BAC120°

1)如圖①,若AB3,求⊙O的半徑.

2)如圖②,點P是∠BAC所對弧上一動點,連接PBPA、PC,試請判斷PA、PB、PC之間的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中,,過點于點,現(xiàn)將沿直線翻折至的位置,交于點.

1)求證:;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸取一個小球然后放回,再隨機摸出一個小球.

(Ⅰ)請用列表法(或畫樹狀圖法)列出所有可能的結(jié)果;

(Ⅱ)求兩次取出的小球標號相同的概率;

(Ⅲ)求兩次取出的小球標號的和大于6的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在生活中,有很多函數(shù)并不一定存在解析式,對于這樣的函數(shù),我們可以通過列表和圖象來對它可能存在的性質(zhì)進行探索,例如下面這樣一個問題:

已知yx的函數(shù),下表是yx的幾組對應值.

x

5

4

3

2

0

1

2

3

4

5

y

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小孫同學根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.

下面是小孫同學的探究過程,請補充完整;

1)如圖,在平面之間坐標系xOy中,描出了以上表中各對應值為坐標的點,根據(jù)描出的點,畫出函數(shù)的圖象:

2)根據(jù)畫出的函數(shù)圖象回答:

x=﹣1時,對應的函數(shù)值y的為   

若函數(shù)值y0,則x的取值范圍是   ;

寫出該函數(shù)的一條性質(zhì)(不能與前面已有的重復):   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇同學利用業(yè)余時間進行射擊訓練,一共射擊7次,經(jīng)過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.

1)這組成績的眾數(shù)是   ;

2)求這組成績的方差;

3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】[問題發(fā)現(xiàn)]

如圖①,在中,點的中點,點在邊上,相交于點,若,則_____ ;

[拓展提高]

如圖②,在等邊三角形中,點的中點,點在邊上,直線相交于點,若,求的值.

[解決問題]

如圖③,在中,,點的中點,點在直線上,直線與直線相交于點.請直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是弦,沿BC對折劣弧BC,交ABD,點E、F分別是弧AB和弧BD的中點.若AD4,AB10,則EF_____

查看答案和解析>>

同步練習冊答案