觀察下面的變形規(guī)律(閱讀材料):
數(shù)學(xué)公式=1-數(shù)學(xué)公式數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式數(shù)學(xué)公式=數(shù)學(xué)公式-數(shù)學(xué)公式,…,
數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式,…;….
解答下面的問(wèn)題:
(1)若n為正整數(shù),請(qǐng)你猜想數(shù)學(xué)公式=______;
(2)受(1)小問(wèn)啟發(fā),請(qǐng)你解方程:數(shù)學(xué)公式+數(shù)學(xué)公式=2;
(3)若n為正整數(shù),請(qǐng)你猜想數(shù)學(xué)公式=______.

解:(1)∵=1-=-,=-,…,
=-;
故答案為:-;

(2)+=2,
-+=2,
=2,
解得:x=,
檢驗(yàn):當(dāng)x=時(shí),x(x+1)≠0,
∴x=是原方程的根;

(3)∵①=1-,=-=-,…,
,,,…;
=-).
故答案為:-).
分析:(1)根據(jù)①中式子的變化得出的值;
(2)利用①中變化規(guī)律進(jìn)而化簡(jiǎn)分式,進(jìn)而解分式方程求出即可;
(3)利用①②中式子變化規(guī)律進(jìn)而猜想得出答案.
點(diǎn)評(píng):此題主要考查了數(shù)據(jù)變化規(guī)律以及分式的加減以及分式方程的解法,根據(jù)已知得出數(shù)據(jù)變化規(guī)律是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
解答下面的問(wèn)題:
(1)若n為正整數(shù),請(qǐng)你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)證明你猜想的結(jié)論;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•平和縣質(zhì)檢)觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
; 
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
解答下面的問(wèn)題:
(1)若n為正整數(shù),請(qǐng)你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1

(2)證明你猜想的結(jié)論;
(3)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
;
1
3×4
=
1
3
-
1
4
;…
1
2013×2014
=
1
2013
-
1
2014

解答下面的問(wèn)題:
(1)試求
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2013×2014
;
(2)若n為正整數(shù),請(qǐng)你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(3)請(qǐng)你根據(jù)變形規(guī)律進(jìn)行適當(dāng)變形,求
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2013×2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…
請(qǐng)根據(jù)以上變形規(guī)律解答下面的問(wèn)題:
(1)求:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2011×2012
 的值.
(2)求:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2011×2013
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

觀察下面的變形規(guī)律:
1
1×2
=1-
1
2
;
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
;…解答下面的問(wèn)題:
(1)若n為正整數(shù),請(qǐng)你猜想
1
n(n+1)
=
1
n
-
1
n+1
1
n
-
1
n+1
;
(2)求和:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2010×2011

查看答案和解析>>

同步練習(xí)冊(cè)答案