分析 (1)根據(jù)正方形的性質(zhì)得到∠B=∠ADF=90°,AD=AB,求出∠ADF,根據(jù)SAS即可推出答案,再利用全等三角形的性質(zhì)解答即可;
(2)設(shè)EC=x.利用勾股定理計(jì)算即可.
解答 解:(1)由正方形ABCD,得 AB=AD,∠B=∠ADF=∠BAD=90°,
在△ABE和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠B=∠ADF=90°}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△ADF,
∴∠BAE=∠FAD,AE=AF.
∴∠BAD=∠BAE+∠EAD=∠FAD+∠EAD=90°.
即得∠EAF=90°,
又∵AE=AF,
∴∠AEF=∠AFE=45°.
(2)∵∠AEB=75°,∠AEF=45°,
∴∠BEF=120°.
即得∠FEC=60°,
由正方形ABCD,得∠C=90°.∴∠EFC=30°.
∴EF=2EC,
設(shè)EC=x.則 EF=2x,BE=DF=2-x,CF=4-x.
在Rt△CEF中,由勾股定理,得 CE2+CF2=EF2.
即得 x2+(4-x)2=4x2.
解得 $x{_1}=2\sqrt{3}-2$,$x{_2}=-2\sqrt{3}-2$(不合題意,舍去).
∴$EC=2\sqrt{3}-2$,$CF=6-2\sqrt{3}$.
∴$S{_{△CEF}}=\frac{1}{2}EC•CF=\frac{1}{2}(2\sqrt{3}-2)(6-2\sqrt{3})=8\sqrt{3}-12$,
∴△FEC的面積為$8\sqrt{3}-12$.
點(diǎn)評(píng) 本題主要考查對(duì)正方形的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn)的理解和掌握是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 有兩個(gè)相等實(shí)數(shù)根 | B. | 有兩個(gè)不相等實(shí)數(shù)根 | ||
C. | 沒有實(shí)數(shù)根 | D. | 無法判斷 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com