【題目】如圖,是等邊三角形,點(diǎn)是邊的中點(diǎn),點(diǎn)在直線上,若是軸對(duì)稱圖形,則的度數(shù)為__________
【答案】15°或30°或75°或120°
【解析】
當(dāng)△PAD是等腰三角形時(shí),是軸對(duì)稱圖形.分四種情形分別求解即可.
如圖,當(dāng)△PAD是等腰三角形時(shí),是軸對(duì)稱圖形.
∵AD是等邊三角形BC邊長(zhǎng)的高,
∴∠BAD=∠CAD=30°,
當(dāng)AP=AD時(shí),∠P1AD=∠P1AB +∠BAD =120°+30°=150°
∴∠AP1D===15°,
∠AP3D===75°.
當(dāng)PA=PD時(shí),可得∠AP2D===120°.
當(dāng)DA=DP時(shí),可得∠AP4D=∠P4AD =30°,
綜上所述,滿足條件的∠APD的值為120°或75°或30°或15°.
故答案為15°或30°或75°或120°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圓規(guī)作∠A的平分線,交BC于點(diǎn)D;(要求:不寫作法,保留作圖痕跡)
(2)求S△ADC: S△ADB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,和均為等邊三角形,點(diǎn)在的延長(zhǎng)線上,連接,求證:.
(2)類比探究:如圖2,和均為等腰直角三角形,,點(diǎn)在邊的延長(zhǎng)線上,連接.請(qǐng)判斷:①的度數(shù)為_________.②線段之間的數(shù)量關(guān)系是_________.
(3)問(wèn)題解決:在(2)中,如果,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高速公路有的路段需要維修,擬安排甲、乙兩個(gè)工程隊(duì)合作完成,規(guī)定工期不得超過(guò)一個(gè)月(30天) ,已知甲隊(duì)每天維修公路的長(zhǎng)度是乙隊(duì)每天維修公路長(zhǎng)度的2倍,并且在各自獨(dú)立完成長(zhǎng)度為公路的維修時(shí),甲隊(duì)比乙隊(duì)少用6天
(1)求甲乙兩工程隊(duì)每天能完成維修公路的長(zhǎng)度分別是多少
(2)若甲隊(duì)的工程費(fèi)用為每天2萬(wàn)元,乙隊(duì)每天的工程費(fèi)用為1.2萬(wàn)元,15 天后乙隊(duì)另有任務(wù),余下工程由甲隊(duì)完成,請(qǐng)你判斷能否在規(guī)定的工期完成且總費(fèi)用不超過(guò)80萬(wàn)元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB═2,AD=,P是BC邊上的一點(diǎn),且BP=2CP.
(1)用尺規(guī)在圖①中作出CD邊上的中點(diǎn)E,連接AE、BE(保留作圖痕跡,不寫作法);
(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說(shuō)明理由;
(3)如圖③,在(2)的條件下,連接EP并廷長(zhǎng)交AB的廷長(zhǎng)線于點(diǎn)F,連接AP,不添加輔助線,△PFB能否由都經(jīng)過(guò)P點(diǎn)的兩次變換與△PAE組成一個(gè)等腰三角形?如果能,說(shuō)明理由,并寫出兩種方法(指出對(duì)稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,為的中點(diǎn),連接,且平分,延長(zhǎng)交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)求證:;
(3)求證:是的平分線;
(4)探究和的面積間的數(shù)量關(guān)系,并寫出探究過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加“荊州市中小學(xué)生首屆詩(shī)詞大會(huì)”,某校八年級(jí)的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(jī)(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過(guò)數(shù)據(jù)分析,列表如下:
班級(jí) | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績(jī)較好?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com