【題目】如圖1的一張紙條,按圖,把這一紙條先沿折疊并壓平,再沿折疊并壓平,若圖3,則圖2的度數(shù)為(

A.B.C.D.

【答案】C

【解析】

設(shè)∠BFEx,根據(jù)折疊的性質(zhì)得∠BFE=∠BFEx,∠AEF=∠AEF,則∠BFCx24°,再由第2次折疊得到∠CFB=∠BFCx24°,于是利用平角定義可計算出x68°,接著根據(jù)平行線的性質(zhì)得∠AEF180°BFE112°,所以∠AEF112°.

如圖,設(shè)∠BFEx,

∵紙條沿EF折疊,

∴∠BFE=∠BFEx,∠AEF=∠AEF

∴∠BFC=∠BFECFEx24°,

∵紙條沿BF折疊,

∴∠CFB=∠BFCx24°,

而∠BFE+∠BFE+∠CFE180°,

xxx24°=180°,

解得x68°,

AD′∥BC′,

∴∠AEF180°BFE180°68°=112°,

∴∠AEF112°.

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高 m,與籃圈中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m.

(1)建立如圖所示的平面直角坐標系,求拋物線的解析式并判斷此球能否準確投中?
(2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標是(m,﹣4),連接AO,AO=5,sin∠AOC=

(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB90°,D、E分別是ABAC的中點,FBC延長線上的一點,且EFDC.(1)求證:四邊形CDEF是平行四邊形;(2)若EF2cm,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空,完成下列說理過程

如圖,點A,O,B在同一條直線上, OD,OE分別平分∠AOC和∠BOC

1)求∠DOE的度數(shù);

2)如果∠COD=65°,求∠AOE的度數(shù).

解:(1)如圖,因為OD是∠AOC的平分線,

所以∠COD =AOC

因為OE是∠BOC 的平分線,

所以 =BOC

所以∠DOE=COD+ =(∠AOC+BOC=AOB= °

2)由(1)可知∠BOE=COE = -∠COD= °.

所以∠AOE= -∠BOE = °

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點D的對應(yīng)點記為點P,折痕為EF(點EF是折痕與矩形的邊的交點),再將紙片還原.

初步思考:

1)若點P落在矩形ABCD的邊AB上(如圖①)

①當點P與點A重合時,∠DEF   °;當點E與點A重合時,∠DEF   °;

②當點EAB上,點FDC上時(如圖②),

求證:四邊形DEPF為菱形,并直接寫出當AP3.5時的菱形EPFD的邊長.

深入探究

2)若點P落在矩形ABCD的內(nèi)部(如圖③),且點E、F分別在AD、DC邊上,請直接寫出AP的最小值   

拓展延伸

3)若點F與點C重合,點EAD上,線段BA與線段FP交于點M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長度相等?若存在,請直接寫出線段AE的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于點Pa,b),點Qc,d),如果abcd,那么點P與點Q就叫作等差點.例如:點P4,2),點Q(﹣1,﹣3),因421﹣(﹣3)=2,則點P與點Q就是等差點.如圖在矩形GHMN中,點H2,3),點N(﹣2,﹣3),MNy軸,HMx軸,點P是直線yx+b上的任意一點(點P不在矩形的邊上),若矩形GHMN的邊上存在兩個點與點P是等差點,則b的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在四邊形ABCD中,點E、點F分別為AD、BC的中點,連接EF

1)如圖1,ABCD,連接AF并延長交DC的延長線于點G,則AB、CDEF之間的數(shù)量關(guān)系為   ;

2)如圖2,∠B90°,∠C150°,求AB、CD、EF之間的數(shù)量關(guān)系?

3)如圖3,∠ABC=∠BCD45°,連接AC、BD交于點O,連接OE,若AB,CD2,BC6,則OE   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,ABC的三個頂點的位置如圖所示,將ABC水平向左平移3個單位,再豎直向下平移2個單位。

1)讀出ABC的三個頂點坐標;

2)請畫出平移后的ABC,并直接寫出點A/、B、C的坐標;

3)求平移以后的圖形的面積

查看答案和解析>>

同步練習冊答案