【題目】如圖,已知:,

1)請(qǐng)找出圖中一對(duì)全等的三角形,并說(shuō)明理由;

2)若,求的度數(shù).

【答案】1)△OAD≌△OBC,證明見(jiàn)解析;(2)∠BED=40°

【解析】

(1)由SAS可以判定△OAD≌△OBC

(2)△OAD≌△OBC可得∠D=∠C=25°利用三角形內(nèi)角和為180°可得∠OBC=65°利用三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和,可得∠BED的度數(shù).

解(1)△OAD≌△OBC

理由:在△OAD與△OBC中

∴△OAD≌△OBC(SAS)

(2)由(1)可知:△OAD≌△OBC

∴∠D=∠C

∵∠C=25°

∴∠D=25°

∵∠O=90°

∴∠OBC=180°-∠O-∠C

=180°-90°-25°

=65°

在△BDE中,∠OBC=∠D+∠BED

∴∠BED=∠OBC-∠D

=65°-25°

=40°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號(hào),經(jīng)確定,遇險(xiǎn)拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時(shí),問(wèn)漁船在B處需要等待多長(zhǎng)時(shí)間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時(shí))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將三角形ABC水平向右平移得到三角形DEF,AD兩點(diǎn)的距離為1,CE=2,∠A=70°.根據(jù)題意完成下列各題:

1ACDF的數(shù)量關(guān)系為 ;ACDF的位置關(guān)系為 ;

2)∠1= 度;

3BF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位畫(huà)家有若干個(gè)邊長(zhǎng)為的正方體,他在地面上把它們擺成如圖(三層)的形式,然后,他把露出的表面都涂上顏色.

1)圖中的正方體一共有多少個(gè)?

2)一點(diǎn)顏色都沒(méi)涂上顏色的正方體有多少個(gè)?

3)如果畫(huà)家按此方式擺成七層,那又要多少個(gè)正方體?同樣涂上顏色,又有多少個(gè)正方體沒(méi)有涂上一點(diǎn)顏色?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車(chē)到黑龍灘(用C表示)開(kāi)展社會(huì)實(shí)踐活動(dòng),車(chē)到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車(chē)輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳統(tǒng)的端午節(jié)即將來(lái)臨,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠(chǎng)價(jià)為每只4元,按要求在20天內(nèi)完成.為了按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,yx滿(mǎn)足如下關(guān)系:

y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為280只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來(lái)刻畫(huà).若李明第x天創(chuàng)造的利潤(rùn)為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠(chǎng)價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給出五個(gè)等量關(guān)系:①ADBC;②ACBD;③CEDE;④∠D=∠C;⑤∠DAB=∠CBA

請(qǐng)你以其中兩個(gè)為條件,另外三個(gè)中的一個(gè)為結(jié)論,推出一個(gè)正確的結(jié)論(只需寫(xiě)出一種情況),并加以證明.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)點(diǎn)D為直線(xiàn)AC上方拋物線(xiàn)上一動(dòng)點(diǎn);

①連接BC、CD,設(shè)直線(xiàn)BD交線(xiàn)段AC于點(diǎn)E,△CDE的面積為S1, △BCE的面積為S2, 求的最大值;

②過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,連接CD,是否存在點(diǎn)D,使得△CDF中的某個(gè)角恰好等于∠BAC的2倍?若存在,求點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案