【題目】我們?cè)趯W(xué)習(xí)“實(shí)數(shù)”時(shí),畫(huà)了這樣一個(gè)圖,即“以數(shù)軸上的單位長(zhǎng)為‘1’的線段作一個(gè)正方形,然后以原點(diǎn)O為圓心,正方形的對(duì)角線長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A”,請(qǐng)根據(jù)圖形回答下列問(wèn)題:

(1)線段OA的長(zhǎng)度是多少?(要求寫(xiě)出求解過(guò)程)
(2)這個(gè)圖形的目的是為了說(shuō)明什么?
(3)這種研究和解決問(wèn)題的方式,體現(xiàn)了 的數(shù)學(xué)思想方法.
(將下列符合的選項(xiàng)序號(hào)填在橫線上)
A、數(shù)形結(jié)合;B、代入;C、換元;D、歸納.

【答案】
(1)

解:∵OB2=12+12=2,

∴OB=,

∴OA=OB=;


(2)

解:數(shù)軸上的點(diǎn)和實(shí)數(shù)﹣一對(duì)應(yīng)關(guān)系;


(3)A
【解析】(1)首先根據(jù)勾股定理求出線段OB的長(zhǎng)度,然后結(jié)合數(shù)軸的知識(shí)即可求解;
(2)根據(jù)數(shù)軸上的點(diǎn)與實(shí)數(shù)的對(duì)應(yīng)關(guān)系即可求解;
(3)本題利用實(shí)數(shù)與數(shù)軸的對(duì)應(yīng)關(guān)系即可解答.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解實(shí)數(shù)與數(shù)軸的關(guān)系(實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,則∠A4=( 。

A. 10° B. 15° C. 30° D. 40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是( 。
A.±0.3是0.09的平方根,即
B.存在立方根和平方根相等的數(shù)
C.正數(shù)的兩個(gè)平方根的積為負(fù)數(shù)
D.的平方根是±8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)據(jù):14,10,12,13,11的中位數(shù)是(
A.14
B.12
C.13
D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解正確的是( 。

A. m3+m2+m=m(m2+m) B. x3﹣x=x(x2﹣1)

C. (a+b)(a﹣b)=a2﹣b2 D. ﹣4a2+9b2=(﹣2a+3b)(2a+3b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次方程x2﹣6x+c=0有一個(gè)根為2,則另一根為(
A.2
B.3
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB為O的直徑,點(diǎn)P是O上不與A,B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)PA到C,使AC=AP,點(diǎn)D為O上一點(diǎn),且滿足ADPB,射線CD交PB延長(zhǎng)線于點(diǎn)E.

(1)求證:PAB≌△ACD;

(2)填空:

若AB=6,則四邊形ABED的最大面積為 ;

若射線CD與O的另一個(gè)交點(diǎn)為F,則當(dāng)PAB的度數(shù)為 時(shí),以O(shè),A,D,F(xiàn)為頂點(diǎn)的四邊形為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)第一汽車集團(tuán)公司2015年?duì)I業(yè)額高達(dá)68000億,把數(shù)據(jù)68000用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的其中兩邊長(zhǎng)分別為4,9,則這個(gè)等腰三角形的周長(zhǎng)是( )

A. 13 B. 17 C. 22 D. 17或22

查看答案和解析>>

同步練習(xí)冊(cè)答案