【題目】如圖,池塘邊一棵垂直于水面BM的筆直大樹AB在點C處折斷,AC部分倒下,點A與水面上的點E重合,部分沉入水中后,點A與水中的點F重合,CF交水面于點D,DF2m,∠CEB30°,∠CDB45°,求CB部分的高度.(精確到0.1m.參考數(shù)據(jù):≈1.41,≈1.73

【答案】CB部分的高度約為3.4m

【解析】

設(shè)CB部分的高度為,則BC,CD,CE2,結(jié)合CECFCDDF即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論.

設(shè)CB部分的高度為xm

∵∠BDC∠BCD45°,

∴BCBDxm

Rt△BCD中,CDxm).

Rt△BCE中,∵∠BEC30°,

∴CE2BC2xm).

∵CECFCD+DF,

∴2xx+2,

解得:x2+

∴BC2+≈3.4m).

答:CB部分的高度約為3.4m

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在飛鏢形ABCD中,EF、GH分別是AB、BCCD、DA的中點.

1)求證:四邊形EFGH是平行四邊形;

2飛鏢形ABCD滿足條件   時,四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形ABCD折疊,使頂點ACD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點AB E,交BC于點F,邊AB折疊后與邊BC交于點G,設(shè)正方形ABCD的周長為m,的周長為n,則的值為(

A.B.C.D.H點位置的變化而變化

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是菱形,且,點是對角線上一點,,繞點逆時針旋轉(zhuǎn)射線,旋轉(zhuǎn)角度為,并交射線于點,連接,,

1)①當時,補全圖形,并證明

②當時,直接寫出線段,,之間的關(guān)系;

2)在平面上找到一點,使得對于任意的,總有,直接寫出點的位置.

3)選擇下面任意一問回答即可(全卷最多不超過100分)

A.證明(1)②的結(jié)論.

B.根據(jù)(2)中找到的的位置,證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的對稱軸是直線x=﹣1,且過點(1,0).頂點位于第二象限,其部分圖象如圖4所示,給出以下判斷:①ab0c0;②4a2b+c0;③8a+c0;④c3a3b;⑤直線y2x+2與拋物線yax2+bx+c兩個交點的橫坐標分別為x1x2,則x1+x2+x1x25.其中正確的個數(shù)有(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有名學(xué)生,為了解全校學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組以問卷調(diào)查的形式,隨機調(diào)查了該校部分學(xué)生的主要上學(xué)方式(參與問卷調(diào)查的學(xué)生只能從以下六個種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

根據(jù)以上信息,回答下列問題:

1)參與本次問卷調(diào)查的學(xué)生共有_____人,其中選擇類的人數(shù)有_____人;

2)在扇形統(tǒng)計圖中,求類對應(yīng)的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;

3)若將這四類上學(xué)方式視為“綠色出行”,請估計該校選擇“綠色出行”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B60°AB2,M為邊AB的中點,N為邊BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DECE,當△CDE為等腰三角形時,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于AB兩點,且點A的橫坐標和點B的縱坐標都是-2 , 求:

(1)一次函數(shù)的解析式;

(2)△AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+4x+ca0)的圖象與x軸交A,B兩點,與y軸交于點C,直線y=﹣2x6經(jīng)過點AC

1)求該二次函數(shù)的解析式;

2)點P為第三象限內(nèi)拋物線上的一個動點,△APC的面積為S,試求S的最大值;

3)若P為拋物線的頂點,且直角三角形APQ的直角頂點Qy軸上,請直接寫出點Q的坐標.

查看答案和解析>>

同步練習冊答案