如圖,矩形OABC在平面直角坐標系xoy中,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點在BC邊上,且拋物線經(jīng)過O、A兩點,直線AC交拋物線于點D。
(1)求拋物線的解析式;
(2)求點D的坐標;
(3)若點M在拋物線上,點N在x軸上,是否存在以點A、D、M、N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由。
(1)y=﹣x2+3x;(2)(1,);(3)N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).
【解析】
試題分析:(1)由OA的長度確定出A的坐標,再利用對稱性得到頂點坐標,設(shè)出拋物線的頂點形式y(tǒng)=a(x-2)2+3,將A的坐標代入求出a的值,即可確定出拋物線解析式;
(2)設(shè)直線AC解析式為y=kx+b,將A與C坐標代入求出k與b的值,確定出直線AC解析式,與拋物線解析式聯(lián)立即可求出D的坐標;
(3)存在,分兩種情況考慮:如圖所示,當四邊形ADMN為平行四邊形時,DM∥AN,DM=AN,由對稱性得到M(3, ),即DM=2,故AN=2,根據(jù)OA+AN求出ON的長,即可確定出N的坐標;當四邊形ADM′N′為平行四邊形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,將y=-代入得:-=-x2+3x,求出x的值,確定出OP的長,由OP+PN′求出ON′的長即可確定出N′坐標.
試題解析:(1)設(shè)拋物線頂點為E,根據(jù)題意OA=4,OC=3,得:E(2,3),
設(shè)拋物線解析式為y=a(x﹣2)2+3,
將A(4,0)坐標代入得:0=4a+3,即a=﹣,
則拋物線解析式為y=﹣(x﹣2)2+3=﹣x2+3x;
(2)設(shè)直線AC解析式為y=kx+b(k≠0),
將A(4,0)與C(0,3)代入得:,
解得:,故直線AC解析式為y=﹣x+3,
與拋物線解析式聯(lián)立得:,解得:或,
則點D坐標為(1,);
(3)存在,分兩種情況考慮:
①當點M在x軸上方時,如答圖1所示:
四邊形ADMN為平行四邊形,DM∥AN,DM=AN,
由對稱性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);
②當點M在x軸下方時,如答圖2所示:
過點D作DQ⊥x軸于點Q,過點M作MP⊥x軸于點P,可得△ADQ≌△NMP,
∴MP=DQ=,NP=AQ=3,將yM=﹣代入拋物線解析式得:﹣=﹣x2+3x,
解得:xM=2﹣或xM=2+,∴xN=xM﹣3=﹣﹣1或﹣1,
∴N3(﹣﹣1,0),N4(﹣1,0).
綜上所述,滿足條件的點N有四個:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).
考點:二次函數(shù)綜合題.
科目:初中數(shù)學 來源:2013-2014學年山東省濟南市九年級中考模擬數(shù)學試卷(解析版) 題型:解答題
如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省濟南市九年級中考模擬數(shù)學試卷(解析版) 題型:選擇題
如圖,A、B、C是反比例函數(shù) (k<0)圖象上三點,作直線l,使A、B、C到直線l的距離之比為3:1:1,則滿足條件的直線l共有( 。
A.4條 B.3條 C.2條 D.1條
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省濟南市九年級中考模擬數(shù)學試卷(解析版) 題型:選擇題
已知圓錐的底面半徑為6cm,高為8cm,則這個圓錐的母線長為( )
A.12cm B.10cm C.8cm D.6cm
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省九年級第一次學業(yè)水平模擬考試數(shù)學試卷(解析版) 題型:解答題
(1)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.
(2)如圖,AC是⊙O的直徑,弦BD交AC于點E。
①求證:⊿ADE∽⊿BCE;
②如果AD2=AE·AC,求證:CD=CB
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省泰安市九年級學業(yè)模擬考試數(shù)學試卷(解析版) 題型:解答題
如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年山東省德州市九年級第一次模擬考試數(shù)學試卷(解析版) 題型:選擇題
如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,且對稱軸為x=1,點A坐標為(-1,0).則下面的四個結(jié)論:①2a+b=0;②4a+2b+c>0 ③B點坐標為(4,0);④當x<-1時,y>0.其中正確的是
A.①② B.③④ C.①④ D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com