如圖,在□ABCD中,E為CD中點,AE與BD相交于點O,S△DOE=12cm2,則S△AOB等于 cm2.

48

解析試題分析:根據(jù)平行四邊形的性質可得AB∥DC,即可證得△AOB∽△DOE,再結合E為CD中點根據(jù)相似三角形的性質求解即可.
解:∵□ABCD
∴AB∥DC,AB=DC
∴△AOB∽△DOE
∵E為CD中點

∵S△DOE=12cm2
∴S△AOB=48cm2.
考點:平行四邊形的性質,相似三角形的判定和性質
點評:相似三角形的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

已知相似且對應邊上的高之比為,若的周長為8,則的周長為              。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

,則    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,DE是△ABC的中位線,則△ADE與△ABC的面積的比是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知,如圖,△ABC∽△AED,AD=5cm,EC=3cm,AC=13cm,則AB=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

已知a、b、c、d是成比例的線段,其中a=3cm,b=2cm,c=6cm,則d=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,⊙O的直徑AC與弦BD相交于點F,點E是DB延長線上一點,∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)已知點B是EF的中點,求證:以A、B、C為頂點的三角形與△AEF相似;
(3)已知AF=4,CF=2,在(2)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

類比、轉化、從特殊到一般等思想方法,在數(shù)學學習和研究中經常用到,如下是一個案例,請補充完整,原題:如圖1,在平行四邊形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.若=3,求的值.

(1)嘗試探究:
在圖1中,過點E作EH∥AB交BG于點H,則AB和EH的數(shù)量關系是________,
CG和EH的數(shù)量關系是________,
的值是________.
(2)類比延伸:
如圖2,在原題條件下,若=m(m>0)則的值是________(用含有m的代數(shù)式表示),試寫出解答過程.
(3)拓展遷移:
如圖3,梯形ABCD中,DC∥AB,點E是BC的延長線上的一點,AE和BD相交于點F,若=a,=b(a>0,b>0)則的值是________(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,小明在打網(wǎng)球時,使球恰好能打過網(wǎng),而且落在離網(wǎng)4米的位置上,則球拍擊球的高度h為     

查看答案和解析>>

同步練習冊答案