【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車的速度為 千米/時(shí), , .
(2)求甲、乙兩車相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程.
【答案】(1)75;3.6;4.5;(2);(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程為180千米.
【解析】
(1)根據(jù)圖象可知兩車2小時(shí)后相遇,根據(jù)路程和為270千米即可求出乙車的速度;然后根據(jù)“路程、速度、時(shí)間”的關(guān)系確定的值;
(2)運(yùn)用待定系數(shù)法解得即可;
(3)求出甲車到達(dá)距地70千米處時(shí)行駛的時(shí)間,代入(2)的結(jié)論解答即可.
解:(1)乙車的速度為:千米/時(shí),
,.
故答案為:75;3.6;4.5;
(2)(千米),
當(dāng)時(shí),設(shè),根據(jù)題意得:
,解得,
∴;
當(dāng)時(shí),設(shè),
∴;
(3)甲車到達(dá)距地70千米處時(shí)行駛的時(shí)間為:(小時(shí)),
此時(shí)甲、乙兩車之間的路程為:(千米).
答:當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程為180千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過(guò)和兩點(diǎn),且與軸交于,直線是拋物線的對(duì)稱軸,過(guò)點(diǎn)的直線與直線相交于點(diǎn),且點(diǎn)在第一象限.
(1)求該拋物線的解析式;
(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;
(3)點(diǎn)在拋物線的對(duì)稱軸上,與直線和軸都相切,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,點(diǎn)D是上的一點(diǎn),且,連接AD交BC于點(diǎn)F,過(guò)點(diǎn)A作⊙O的切線AE交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:CF=CE;
(2)若AD=8,AC=5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某植物園有一塊足夠大的空地,其中有一堵長(zhǎng)為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計(jì)了如圖甲和乙的兩種方案:
方案甲中AD的長(zhǎng)不超過(guò)墻長(zhǎng);方案乙中AD的長(zhǎng)大于墻長(zhǎng).
(1)若a=6.
①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長(zhǎng)是多少米?
②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?
(2)若0<a<6.5,哪種方案能圍成面積最大的矩形花圃?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線與軸交于兩點(diǎn),,與軸交于,并且對(duì)稱軸.
(1)求拋物線的解析式;
(2)在軸上方的拋物線上,過(guò)的直線與直線交于點(diǎn),與軸交于點(diǎn),求的最大值;
(3)點(diǎn)為拋物線對(duì)稱軸上一點(diǎn),當(dāng)是以為直角邊的直角三角形時(shí),求點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙0的直徑,點(diǎn)C在⊙0上,D是中點(diǎn),若∠BAC=70°,求∠C.
下面是小雯的解法,請(qǐng)幫他補(bǔ)充完整:
解:在⊙0中,
∵D是的中點(diǎn)
∴BD=CD.
∴∠1=∠2( )(填推理的依據(jù)).
∵∠BAC=70°,
∴∠2=35°.
∵AB是⊙0的直徑,
∴∠ADB=90°( )(填推理的依據(jù)).
∴∠B=90°-∠2=55°.
∵A、B、C、D四個(gè)點(diǎn)都在⊙0上,
∴∠C+∠B=180°( )(填推理的依據(jù)).
∴∠C=180°-∠B= (填計(jì)算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)是4cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B的路徑運(yùn)動(dòng),到B點(diǎn)停止運(yùn)動(dòng),運(yùn)動(dòng)速度是1cm/s,以PD為邊,在直線PD下方做正方形DPEF,連接BE,下列函數(shù)圖象中能反映BE的長(zhǎng)度y(cm)與運(yùn)動(dòng)時(shí)間t(s)的函數(shù)關(guān)系的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.
(1)求證:∠HEA=∠CGF;
(2)當(dāng)AH=DG時(shí),求證:菱形EFGH為正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com