如圖所示,直線l1,l2,l3表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,你能說出可供選擇的地址有幾處嗎?
分析:根據(jù)角平分線的性質(zhì)貨物中轉(zhuǎn)站必須是三條相交直線所組成的三角形的內(nèi)角或外角平分線的交點(diǎn),而外角平分線有3個(gè)交點(diǎn),內(nèi)角平分線有一個(gè)交點(diǎn),即可得到答案.
解答:解:∵中轉(zhuǎn)站要到三條公路的距離都相等,
∴貨物中轉(zhuǎn)站必須是三條相交直線所組成的三角形的內(nèi)角或外角平分線的交點(diǎn),
而外角平分線有3個(gè)交點(diǎn),內(nèi)角平分線有一個(gè)交點(diǎn),
∴貨物中轉(zhuǎn)站可以供選擇的地址有4個(gè).
點(diǎn)評:本題主要考查了應(yīng)用與設(shè)計(jì)作圖,關(guān)鍵是掌握角平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,直線L1⊥L2,垂足為點(diǎn)O,A,B是直線L1上的兩點(diǎn),且OB=2,AB=
2
.直線L1繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為a(0°<a<108°).當(dāng)a在什么范圍內(nèi)變化時(shí),直線L2上存在點(diǎn)P,使得△BPA是以∠B為頂角的等腰三角形,請用不等式表示a的取值范圍:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,直線l1⊥l2,垂足為點(diǎn)O,A,B是直線l1上的兩點(diǎn),且OB=2,AB=
2
.直線l1繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α<180°).
(1)當(dāng)α=60°時(shí),在直線l2上找點(diǎn)P,使得△BPA是以∠B為頂角的等腰三角形,此時(shí)OP=
 

(2)當(dāng)α在什么范圍內(nèi)變化時(shí),直線l2上存在點(diǎn)P,使得△BPA是以∠B為頂角的等腰三精英家教網(wǎng)角形,請用不等式表示α的取值范圍:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

44、如圖所示,直線L1∥L2,C1,C2,C3是L1上的三點(diǎn),連接C1A,C1B,C2A,C2B,C3A,C3B,得△C1AB,△C2AB,△C3AB,試說明△C1AB,△C2AB,△C3AB的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖所示,直線l1∥l2,∠1=40°,則∠2為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,直線l1:y=3x+3與x軸交于B點(diǎn),與直線l2交于y軸上一點(diǎn)A,且l2與x軸的交點(diǎn)為C(1,0).
(1)求證:∠ABC=∠ACB;
(2)如圖②所示,過x軸上一點(diǎn)D(-3,0)作DE⊥AC于E,DE交y軸于F點(diǎn),交AB于G點(diǎn),求G點(diǎn)的坐標(biāo).
(3)如圖③所示,將△ABC沿x軸向左平移,AC邊與y軸交于一點(diǎn)P(P不同于A、C兩點(diǎn)),過P點(diǎn)作一直線與AB的延長線交于Q點(diǎn),與x軸交于M點(diǎn),且CP=BQ,在△ABC平移的過程中,線段OM的長度是否發(fā)生變化?若不變,請求出它的長度;若變化,確定其變化范圍.

查看答案和解析>>

同步練習(xí)冊答案