已知:如圖,直線與x軸相交于點A,與直線相交于點P.動點E從原點O出發(fā),以每秒1個單位長度的速度沿著OPA的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,矩形EBOF與△OPA重疊部分面積為S.

(1)求點P的坐標(biāo);
(2)請判斷△OPA的形狀并說明理由;
(3)請?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.

(1);
(2)等邊三角形;理由見解析;
(3)

解析試題分析:(1)由兩直線相交可列出方程組,求出P點坐標(biāo);
(2)將y=0代入,可求出OA=4,作PD⊥OA于D,則OD=2,PD=,利用tan∠POA=,可知∠POA=60°,由OP=4.可知△POA是等邊三角形;
(3)①當(dāng)0<t≤4時,在Rt△EOF中,∠EOF=60°,OE=t,則EF=,OF=,則S=•OF•EF=;
②當(dāng)4<t<8時,設(shè)EB與OP相交于點C,易知:CE=PE=t﹣4,AE=8﹣t,可得AF=4﹣,EF=(8﹣t),有OF=OA﹣AF=4﹣(4﹣)=,S=(CE+OF)•EF=﹣+4t﹣8
試題解析:(1)由題意可得:,
解得,
所以點P的坐標(biāo)為(2,);
(2)將y=0代入y=﹣x+4,得到:﹣x+4=0,
∴x=4,即OA=4,
作PD⊥OA于D,則OD=2,PD=2,
∵tan∠POA==,
∴∠POA=60°,
∵OP=,
∴△POA是等邊三角形;
(3)①當(dāng)0<t≤4時,如圖,在Rt△EOF中,

∵∠EOF=60°,OE=t,
∴EF=,OF=,
∴S=•OF•EF=
②當(dāng)4<t<8時,如圖,設(shè)EB與OP相交于點C,

∵CE=PE=t﹣4,AE=8﹣t,
∴AF=4﹣,EF=(8﹣t),
∴OF=OA﹣AF=4﹣(4﹣)=,
∴S=(CE+OF)•EF=(t﹣4+t)×(8﹣t)=
考點:一次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線過x軸上兩點A(9,0),C(-3,0),且與y軸交于點B(0,-12).

(1)求拋物線的解析式;
(2)若動點P從點A出發(fā),以每秒2個單位沿射線AC方向運動;同時,點Q從點B出發(fā),以每秒1個單位沿射線BA方向運動,當(dāng)點P到達(dá)點C處時,兩點同時停止運動.問當(dāng)t為何值時,△APQ∽△AOB?
(3)若M為線段AB上一個動點,過點M作MN平行于y軸交拋物線于點N.
①是否存在這樣的點M,使得四邊形OMNB恰為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點M運動到何處時,四邊形CBNA的面積最大?求出此時點M的坐標(biāo)及四邊形CBNA面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù).
(1)求頂點坐標(biāo)和對稱軸方程;
(2)求該函數(shù)圖象與x標(biāo)軸的交點坐標(biāo);
(3)指出x為何值時,;當(dāng)x為何值時,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A的坐標(biāo)為(m,m),點B的坐標(biāo)為(n,-n),且經(jīng)過原點O,連接OA、OB、AB,線段AB交y軸于點C.已知實數(shù)m,n(m<n)分別是方程x2-2x-3=0的兩根.

(1)求m,n的值.
(2)求拋物線的解析式.
(3)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側(cè)),連接OD,BD.當(dāng)△OPC為等腰三角形時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一條拋物線經(jīng)過原點和點C(8,0),A、B是該拋物線上的兩點,AB∥x軸,OA=5,AB=2.點E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過點A,另一邊交線段BC于點F,連接AF.

(1)求拋物線的解析式;
(2)當(dāng)點F是BC的中點時,求點E的坐標(biāo);
(3)當(dāng)△AEF是等腰三角形時,求點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)為常數(shù),且.
(1)求證:不論為何值,該函數(shù)的圖象與軸總有兩個公共點;
(2)設(shè)該函數(shù)的圖象的頂點為C,與軸交于A,B兩點,當(dāng)△ABC的面積等于2時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知點和點在拋物線上.

(1)求的值及點的坐標(biāo);
(2)點軸上,且滿足△是以為直角邊的直角三角形,求點的坐標(biāo);
(3)平移拋物線,記平移后點A的對應(yīng)點為,點B的對應(yīng)點為. 點M(2,0)在x軸上,當(dāng)拋物線向右平移到某個位置時,最短,求此時拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在x軸上,且與y軸交于A點. 直線經(jīng)過A、B兩點,點B的坐標(biāo)為(3,4).
(1)求拋物線的解析式,并判斷點B是否在拋物線上;
(2)如果點B在拋物線上,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x.當(dāng)x為何值時,h取得最大值,求出這時的h值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個矩形花圃ABCD,已知墻長MN=30m.

(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設(shè)計一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.

查看答案和解析>>

同步練習(xí)冊答案