閱讀材料:“最值問題”是數(shù)學(xué)中的一類較具挑戰(zhàn)性的問題.其實(shí),數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學(xué)、物理的學(xué)者,相傳有位將軍曾向他請(qǐng)教一個(gè)問題--如圖1,從A點(diǎn)出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B 的值最。
解答問題:
(1)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;
(2)如圖3,已知菱形ABCD的邊長(zhǎng)為6,∠DAB=60°.將此菱形放置于平面直角坐標(biāo)系中,各頂點(diǎn)恰好在坐標(biāo)軸上.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度,沿A→C的方向,向點(diǎn)C運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)C后,立即以相同的速度返回,返回途中,當(dāng)運(yùn)動(dòng)到x軸上某一點(diǎn)M時(shí),立即以每秒1個(gè)單位的速度,沿M→B的方向,向點(diǎn)B運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)B時(shí),整個(gè)運(yùn)動(dòng)停止.
①為使點(diǎn)P能在最短的時(shí)間內(nèi)到達(dá)點(diǎn)B處,則點(diǎn)M的位置應(yīng)如何確定?
②在①的條件下,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),△PAB的面積為S,在整個(gè)運(yùn)動(dòng)過程中,試求S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.

【答案】分析:(1)延長(zhǎng)AO交圓于M,連接CM交OB于P,連接AC,求出∠ACM、∠M,求出AC、根據(jù)勾股定理求出PM即可;
(2)①根據(jù)運(yùn)動(dòng)速度不同以及運(yùn)動(dòng)距離,得出當(dāng)PB⊥AB時(shí),點(diǎn)P能在最短的時(shí)間內(nèi)到達(dá)點(diǎn)B處;
②根據(jù)三角形的面積公式求出從A到C時(shí),s與t的關(guān)系式和從C到(,0)以及到B的解析式.
解答:解:(1)延長(zhǎng)AO交圓O于M,連接CM交OB于P,連接AC,
則此時(shí)AP+PC=PC+PM=CM最小,
∵AM是直徑,∠AOC=60°,
∴∠ACM=90°,∠AMC=30°,
∴AC=AM=2,AM=4,由勾股定理得:CM==2
答:PA+PC的最小值是2

(2)①根據(jù)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度,沿A→C的方向,向點(diǎn)C運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)C后,立即以相同的速度返回,返回途中,當(dāng)運(yùn)動(dòng)到x軸上某一點(diǎn)M時(shí),立即以每秒1個(gè)單位的速度,沿M→B的方向,向點(diǎn)B運(yùn)動(dòng),
即為使點(diǎn)P能在最短的時(shí)間內(nèi)到達(dá)點(diǎn)B處,
∴當(dāng)PB⊥AB時(shí),符合題意,
∵菱形ABCD,AB=6,∠DAB=60°,
∴∠BAO=30°,AB=AD,AC⊥BD,
∴△ABD是等邊三角形,
∴BD=6,BO=3,由勾股定理得:AO=3
在Rt△APB中,AB=6,∠BAP=30°,BP=AP,由勾股定理得:AP=4,BP=2
∴點(diǎn)M的位置是(,0)時(shí),用時(shí)最少.
②當(dāng)0<t≤3時(shí),AP=2t,
∵菱形ABCD,
∴∠OAB=30°,
∴OB=AB=3,
由勾股定理得:AO=CO=3
∴S=AP×BO=×2t×3=3t;
③當(dāng)3<t≤4時(shí),AP=6-(2t-6)=12-2t,
∴S=AP×BO=×(12-2t)×3=18-3t.
當(dāng)4<t≤6時(shí),
S=AB×BP=×6×[2-(t-4)]=-3t+18,
答:S與t之間的函數(shù)關(guān)系式是當(dāng)3<t≤4時(shí),S=18-3t;當(dāng)0<t≤3時(shí),S=3t.
當(dāng)4<t≤6時(shí),S=-3t+18
點(diǎn)評(píng):本題主要考查對(duì)含30度角的直角三角形,勾股定理,三角形的面積,軸對(duì)稱-最短問題,圓周角定理等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:“最值問題”是數(shù)學(xué)中的一類較具挑戰(zhàn)性的問題.其實(shí),數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學(xué)、物理的學(xué)者,相傳有位將軍曾向他請(qǐng)教一個(gè)問題--如圖1,從A點(diǎn)出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B 的值最。
解答問題:
(1)如圖2,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值;
(2)如圖3,已知菱形ABCD的邊長(zhǎng)為6,∠DAB=60°.將此菱形放置于平面直角坐標(biāo)系中,各頂點(diǎn)恰好在坐標(biāo)軸上.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位的速度,沿A→C的方向,向點(diǎn)C運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)C后,立即以相同的速度返回,返回途中,當(dāng)運(yùn)動(dòng)到x軸上某一點(diǎn)M時(shí),立即以每秒1個(gè)單位的速度,沿M→B的方向,向點(diǎn)B運(yùn)動(dòng).當(dāng)?shù)竭_(dá)點(diǎn)B時(shí),整個(gè)運(yùn)動(dòng)停止.
①為使點(diǎn)P能在最短的時(shí)間內(nèi)到達(dá)點(diǎn)B處,則點(diǎn)M的位置應(yīng)如何確定?
②在①的條件下,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),△PAB的面積為S,在整個(gè)運(yùn)動(dòng)過程中,試求S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

仔細(xì)閱讀以下內(nèi)容解決問題:
偏微分方程,對(duì)于多個(gè)變量的求最值問題相當(dāng)有用,以2001年全國(guó)聯(lián)賽第二試第一題為例給同學(xué)們作一介紹,問題建立數(shù)學(xué)模型后實(shí)際上是求:
y=5a2+6ab+3b2-30a-20b+46的最小值,先介紹求導(dǎo)公式,(xn)′=nxn-1,a′=0(a為常數(shù)),當(dāng)ya′=10a+6b-30=0,yb′=6a+6b-20=0時(shí),可取得最小值(ya′的意思是關(guān)于a求導(dǎo),把b看作常數(shù),(5a2)′=10a,(6ab)′=6b,(3a2-20b+46)′=0).解方程,得a=
5
2
,b=
5
6
,代入可得y=
1
6
,即是最小值.
同學(xué)們:以上內(nèi)容很有挑戰(zhàn)性,確保讀懂后請(qǐng)解答下面問題:運(yùn)用閱讀材料中的知識(shí)求s=4x2+2y2+4xy-12x-8y+17的最小值
7
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北省模擬題 題型:解答題

閱讀以下的材料:
如果兩個(gè)正數(shù)a,b,即a>0,b>0,有下面的不等式:
當(dāng)且僅當(dāng)a=b時(shí)取到等號(hào)
我們把叫做正數(shù)a,b的算術(shù)平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知x>0,求函數(shù)的最小值。
解:令a=x,b=,則有,得,當(dāng)且僅當(dāng)時(shí),即x=2時(shí),函數(shù)有最小值,最小值為2。
根據(jù)上面回答下列問題:
①已知x>0,則當(dāng)x=____時(shí),函數(shù)取到最小值,最小值為____;
②用籬笆圍一個(gè)面積為100m2的矩形花園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用的籬笆最短,最短的籬笆周長(zhǎng)是多少;
③已知x>0,則自變量x取何值時(shí),函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀以下的材料:   

 如果兩個(gè)正數(shù),即,有下面的不等式:

          當(dāng)且僅當(dāng)時(shí)取到等號(hào)

我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:

例:已知,求函數(shù)的最小值。

解:令,則有,得,當(dāng)且僅當(dāng)時(shí),即時(shí),函數(shù)有最小值,最小值為。

根據(jù)上面回答下列問題

①     已知,則當(dāng)         時(shí),函數(shù)取到最小值,最小值

          ;

②     用籬笆圍一個(gè)面積為的矩形花園,問這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所

用的籬笆最短,最短的籬笆周長(zhǎng)是多少;

③. 已知,則自變量取何值時(shí),函數(shù)取到最大值,最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案