【題目】完成下面的證明,在括號內填上理由.
如圖,,.
求證:.
證明: (已知),
(____________________).
(____________________).
__________(____________________).
(____________________).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,對角線AC與BD相交于點O,過點O作一條直線分別交AB,CD于點E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】好學小東同學,在學習多項式乘以多項式時發(fā)現(xiàn):(x+4)(2x+5)(3x-6)的結果是一個多項式,并且最高次項為:x2x3x=3x3,常數(shù)項為:4×5×(-6)=-120,那么一次項是多少呢?要解決這個問題,就是要確定該一次項的系數(shù).根據(jù)嘗試和總結他發(fā)現(xiàn):一次項系數(shù)就是:×5×(-6)+2×(-6)×4+3×4×5=-3,即一次項為-3x.
請你認真領會小東同學解決問題的思路,方法,仔細分析上面等式的結構特征.結合自己對多項式乘法法則的理解,解決以下問題.
(1)計算(x+2)(3x+1)(5x-3)所得多項式的一次項系數(shù)為_____.
(2)(x+6)(2x+3)(5x-4)所得多項式的二次項系數(shù)為_______.
(3)若計算(x2+x+1)(x2-3x+a)(2x-1)所得多項式不含一次項,求a的值;
(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+···+a2020x+a2021,則a2020=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[問題情境]勾股定理是一條古老的數(shù)學定理,它有很多種證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖,利用面積法進行證明.著名數(shù)學家華羅庚曾提出把“數(shù)形關系(勾股定理)”帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言.
[定理表述]請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述).
[嘗試證明]以圖(1)中的直角三角形為基礎,可以構造出以a、b為底,以a+b為高的直角梯形(如圖(2)),請你利用圖(2)驗證勾股定理.
[知識拓展]利用圖(2)中的直角梯形,我們可以證明.其證明步驟如下:
∵BC=a+b,AD=________,
又∵在直角梯形ABCD中,有BC________AD(填大小關系),即________,
∴.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負,行車里程(單位:km),依先后次序記錄如下:+10,﹣3、﹣4、+4、﹣9、+6、﹣4、﹣6、﹣4、+10.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若平均每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE在∠BOC內部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,O為原點.點A在x軸的正半軸上,點B在y軸的正半軸上,tan∠OAB=2.二次函數(shù)y=x2+mx+2的圖象經過點A,B,頂點為D.
(1)求這個二次函數(shù)的解析式;
(2)將△OAB繞點A順時針旋轉90°后,點B落到點C的位置.將上述二次函數(shù)圖象沿y軸向上或向下平移后經過點C.請直接寫出點C的坐標和平移后所得圖象的函數(shù)解析式;
(3)設(2)中平移后所得二次函數(shù)圖象與y軸的交點為B1 , 頂點為D1 . 點P在平移后的二次函數(shù)圖象上,且滿足△PBB1的面積是△PDD1面積的2倍,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了調查某小區(qū)居民的用水情況,隨機抽查了10戶家庭的月用水量,結果如下表:
月用水量(噸) | 4 | 5 | 6 | 9 |
戶數(shù) | 3 | 4 | 2 | 1 |
則關于這10戶家庭的月用水量,下列說法錯誤的是 ( )
A.中位數(shù)是5噸
B.眾數(shù)是5噸
C.極差是3噸
D.平均數(shù)是5.3噸
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:﹣3﹣(﹣4)+7;
(2)計算:;
(3)計算:;
(4)計算:﹣14﹣(﹣2)2+6×(﹣);
(5)化簡:3x2+5x﹣5x2+3x;
(6)化簡:6(m2﹣n)﹣3(n+2m2).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com