【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式進(jìn)行,兩項(xiàng)成績的原始分均為.名選手的得分如下:根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為分),現(xiàn)得知號(hào)選手的綜合成績?yōu)?/span>.

序號(hào)

筆試成績/

面試成績/

1)求筆試成績和面試成績各占的百分比:

2)求出其余兩名選手的綜合成績,并以綜合成績排序確定這三名選手的名次。

【答案】(1)筆試占,面試占;(2)第一名:2號(hào),第二名:1號(hào),第三名:3號(hào).

【解析】

(1)設(shè)筆試成績占百分比為,則面試成績占比為,根據(jù)題意列出方程,求解即可;

2)根據(jù)筆試成績和面試成績各占的百分比,分別求出其余兩名選手的綜合成績,即可得出答案.

解:(1)設(shè)筆試成績占百分比為,則面試成績占比為.

由題意,得

∴筆試成績占,面試成績占.

22號(hào)選手的綜合成績:

3號(hào)選手的綜合成績:

∴三位選手按綜合成績排名為:第一名:2號(hào),第二名:1號(hào),第三名:3號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,MBC邊(不含端點(diǎn)BC)上任意一點(diǎn),PBC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN90°,求證:AMMN

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AEMC,連接ME.正方形ABCD中,∠B=∠BCD90°,ABBC.∴∠NMC180°﹣∠AMN﹣∠AMB180°﹣∠B﹣∠AMB=∠MAB=∠MAE

(下面請(qǐng)你完成余下的證明過程)

2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是∠ACP的平分線上一點(diǎn),則∠AMN60°時(shí),結(jié)論AMMN是否還成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展一起閱讀,共同成長課外讀書周活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了八年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問題:

1)本次調(diào)查的學(xué)生總數(shù)為______人,在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形圓心角度數(shù)是______;

2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校八年級(jí)共有學(xué)生人,估計(jì)八年級(jí)一周課外閱讀時(shí)間至少為小時(shí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角∠CAB的度數(shù);

(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)O在直線AB上,作射線OC,點(diǎn)D在平面內(nèi),∠BOD與∠AOC互余.

(1)若∠AOC:BOD=4:5,則∠BOD= ;

(2)若∠AOC=α(0°<α≤45°),ON平分∠COD

①當(dāng)點(diǎn)D在∠BOC內(nèi),補(bǔ)全圖形,直接寫出∠AON的值(用含α的式子表示);

②若∠AON與∠COD互補(bǔ),求出α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片)折疊,使點(diǎn)剛好落在線段上,且折痕分別與邊,相交于點(diǎn),,設(shè)折疊后點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn),.

1)判斷四邊形的形狀,并證明你的結(jié)論;

2)若,且四邊形的面積,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知正方形ABCD,E是線段BC上一點(diǎn),N是線段BC延長線上一點(diǎn),以AE為邊在直線BC的上方作正方形AEFG.

圖(1) 圖(2)

(1)連接GD,求證:DG=BE;

(2)連接FC,求∠FCN的度數(shù);

(3)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=m,BC=n(m、n為常數(shù)),E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線BC的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)EBC運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變?若∠FCN的大小不變,請(qǐng)用含m、n的代數(shù)式表示tanFCN的值;若∠FCN的大小發(fā)生改變,請(qǐng)畫圖說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某公園準(zhǔn)備修建一塊長方形草坪,長為a米,寬為b米.并在草坪上修建如圖所示的十字路,

已知十字路寬2米.

(1)用含ab的代數(shù)式表示修建的十字路的面積.

(2)若a=30,b=20,求草坪(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,EF90°BC,AEAF,結(jié)論:EMFN;AF

EB;③∠FANEAM;④△ACNABM其中正確的有

查看答案和解析>>

同步練習(xí)冊(cè)答案