如圖,CD是圓O的弦,AB是圓O的直徑,CD=8,AB=10,則點(diǎn)A、B到直線CD的距離的和是( )
A.6
B.8
C.10
D.12
【答案】分析:要求點(diǎn)A、B到直線CD的距離的和,可以構(gòu)造梯形的中位線,只需根據(jù)垂徑定理和勾股定理求得梯形的中位線即可.
解答:解:過(guò)O作直線OG⊥CD于G,連接OD,則OG∥AE∥BF.
根據(jù)垂徑定理,得GD=CD=×8=4.
又因?yàn)镺D=AB=×10=5,
根據(jù)勾股定理,得OG==3.
由于O是AB中點(diǎn),OG∥AE∥BF,則OG是梯形AEFB的中位線,
∴點(diǎn)A、B到直線CD的距離的和是(AE+BF)=2OG=2×3=6.
故選A.
點(diǎn)評(píng):此題綜合運(yùn)用了垂徑定理、勾股定理和梯形的中位線定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,CD是圓O的弦,AB是圓O的直徑,CD=8,AB=10,則點(diǎn)A、B到直線CD的距離的和是( 。精英家教網(wǎng)
A、6B、8C、10D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,CD是圓O的弦,CE=FD,半徑OA、OB分別過(guò)E、F點(diǎn),求證:△OEF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《第3章 圓》2010年整章水平測(cè)試A卷(解析版) 題型:選擇題

如圖,CD是圓O的弦,AB是圓O的直徑,CD=8,AB=10,則點(diǎn)A、B到直線CD的距離的和是( )
A.6
B.8
C.10
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:《第3章 圓》2009年單元評(píng)估試卷(解析版) 題型:選擇題

如圖,CD是圓O的弦,AB是圓O的直徑,CD=8,AB=10,則點(diǎn)A、B到直線CD的距離的和是( )
A.6
B.8
C.10
D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案