.已知,且,則的結果是(     )

   A.2     B.2    C.0     D.8

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AC=6,則該梯形的高DE等于
 
.(結果不取近似值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(下面兩小題的結果都精確到0.1米,參考數(shù)據(jù):
3
≈1.732)
(1)若修建的斜坡BE的坡度為1:0.8,則平臺DE的長為
14.0
14.0
米;
(2)斜坡前的池塘內有一座建筑物GH,小明在平臺E處測得建筑物頂部H的仰角(即∠HEM)為30°,測得建筑物頂部H在池塘中倒影H′的俯角為45°(即∠H′EM),測得點B、C、A、G、H、H′在同一個平面內,點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高和AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

唐朝詩人李欣的詩《古從軍行》開頭兩句說:“白日登山望峰火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題--將軍飲馬問題:
如圖1所示,詩中將軍在觀望烽火之后從山腳下的A點出發(fā),走到河旁邊的P點飲馬后再到B點宿營.請問怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長線上,取B關于河岸的對稱點B′,連接AB′,與河岸線相交于P,則P點就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點E、F是底邊AD與BC的中點,連接EF,在線段EF上找一點P,使BP+AP最短.
作點B關于EF的對稱點,恰好與點C重合,連接AC交EF于一點,則這點就是所求的點P,故BP+AP的最小值為
2
3
2
3

(2)實踐運用
如圖3,已知⊙O的直徑MN=1,點A在圓上,且∠AMN的度數(shù)為30°,點B是弧AN的中點,點P在直徑MN上運動,求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
①求這條拋物線所對應的函數(shù)關系式;
②在拋物線的對稱軸直線x=1上找到一點M,使△ACM周長最小,請求出此時點M的坐標與△ACM周長最小值.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

.已知,且,則的結果是(     )

   A.2     B.2    C.0     D.8

查看答案和解析>>

同步練習冊答案