正方形ABCD中,點P在BC上,點E、F分別在AB、CD上,若AP=13cm,點A和點P關(guān)于EF對稱,則EF=________.

13cm
分析:如圖,由正方形的性質(zhì)可以得出∠B=∠C=90°,AB=BC.再由點A和點P關(guān)于EF對稱可以得出∠EHP=90°,作EG∥BC,就可以得出∠AME=∠APB,∠DGE=∠C=90°,可以得出△ABP≌△EGF,就可以得出AP=EF=13而得出結(jié)論.
解答:解:作EG∥BC交AP于M.
∴∠AME=∠APB,∠DGE=∠C.
∵四邊形ABCD是正方形,
∴∠B=∠C=90°,AB=BC.
∴∠DGE=90°,
∴∠B=∠EGF.
∴∠EGC=90°.
∴四邊形EBCG是矩形,
∴EG=BC.
∴AB=EG.
∵點A和點P關(guān)于EF對稱,
∴∠EHP=90°,
∴∠HEM+∠EMH=90°.
∵∠HEM+∠EFG=90°,
∴∠HME=∠EFG,
∴∠APB=∠EFG.
在△ABP和△EGF中,
,
∴△ABP≌△EGF,
∴AP=EF.
∵AP=13cm,
∴EF=13cm.
故答案為:13.
點評:本題考查了正方形的性質(zhì)的運用,軸對稱的性質(zhì)的運用,直角三角形的性質(zhì)的運用,全等三角形的判定與性質(zhì)的運用,解答時證明△ABP≌△EGF是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則F、C兩點的距離為
1或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O(shè)為圓心精英家教網(wǎng),OA的長為半徑的圓交邊CD于點M,連接OM,過點M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點O的運動過程中,設(shè)△CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,正方形ABCD中,點A、B的坐標(biāo)分別為(0,12),(8,6),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A→B→C→D勻速運動,同時動點Q從點(1,0)出發(fā),以相同速度沿x軸正方向運動,當(dāng)P點到D點時,兩點同時停止運動,設(shè)運動的時間為t秒.
(1)正方形邊長
 
,頂點C的坐標(biāo)
 
;
(2)當(dāng)P點在邊AB上運動時,△OPQ的面積S與運動時間t(秒)的函數(shù)圖象是如圖②所示的拋物線的一部分,求點P,Q運動速度;
(3)求在(2)中當(dāng)t為何值時,△OPQ的面積最大,并求此時P點的坐標(biāo);
(4)如果點P、Q保持原速度速度不變,當(dāng)點P沿A?B?C?D勻速運動時,OP與PQ能否相等,若能,直接寫出所有符合條件的t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察本題的三個圖形,思考下列問題
(1)如圖1,正方形ABCD中,點M是CD上異于端點的任意一點,過點C作CN⊥BM于O,且交AD于N點.求證:BM=CN;
(2)如圖2,等邊△ABC中,點M是CA上異于端點的任意一點,過點C作射線CN交AB于點N、交BM于點O,且使∠BOC=120°.
請你判斷此時BM與CN的大小關(guān)系,并證明你的結(jié)論.
(3)如圖3,正n邊形ABCDE…An中,點M是CD上異于端點的任意一點,過點C作射線CN交DE于點N、交BM于點O,且使BM=CN.設(shè)此時∠BOC的大小為y,請你寫出y與n之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案