【題目】如圖,矩形中,,,是邊上一點,連接,將沿翻折,點的對應(yīng)點是,連接,當(dāng)是直角三角形時,則的值是________
【答案】3或6
【解析】
分兩種情況討論:①當(dāng)∠AFE=90°時,易知點F在對角線AC上,設(shè)DE=x,則AE、EF均可用x表示,在Rt△AEF中利用勾股定理構(gòu)造關(guān)于x的方程即可;②當(dāng)∠AEF=90°時,易知F點在BC上,且四邊形EFCD是正方形,從而可得DE=CD.
解:當(dāng)E點與A點重合時,∠EAF的角度最大,但∠EAF小于90°,
所以∠EAF不可能為90°,
分兩種情況討論:
①當(dāng)∠AFE=90°時,如圖1所示,
根據(jù)折疊性質(zhì)可知∠EFC=∠D=90°,
∴A、F、C三點共線,即F點在AC上,
∵四邊形ABCD是矩形,
∴AC=,
∴AF=ACCF=ACCD=106=4,
設(shè)DE=x,則EF=x,AE=8x,
在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
即(8x)2=x2+42,
解得x=3,即DE=3;
②當(dāng)∠AEF=90°時,如圖2所示,則∠FED=90°,
∵∠D=∠BCD=90°,DE=EF,
∴四邊形EFCD是正方形,
∴DE=CD=6,
故答案為:3或6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC平分∠DAB交⊙O于點C,過點C的直線垂直于AD交AB的延長線于點P,弦CE交AB于點F,連接BE.
(1)求證:PD是⊙O的切線;
(2)若PC=PF,試證明CE平分∠ACB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知A、B兩點的坐標分別為A(0,),B(2,0).直線AB與反比例函數(shù)的圖象交于點C和點D(1,a).
(1)求直線AB和反比例函數(shù)的解析式.
(2)求∠ACO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A、E之間,連接CE、CF,EF,則以下四個結(jié)論一定正確的是:①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等邊△;④CG⊥AE( )
A. 只有①② B. 只有①②③ C. 只有③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).
(1)求k、m的值;
(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.
①當(dāng)n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;
②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊中,,射線,點從點出發(fā)沿射線以的速度運動,點從點出發(fā)沿射線以的速度運動,如果點同時出發(fā),設(shè)運動時間為,當(dāng)時,以為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市射擊隊甲、乙兩名隊員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:
(1)請將下表補充完整:
(2)請從下列三個不同的角度對這次測試結(jié)果進行分析:
①從平均數(shù)和方差相結(jié)合看, 的成績好些;
②從平均數(shù)和中位數(shù)相結(jié)合看, 的成績好些;
③若其他隊選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認為選誰參加,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:∠ACB是△ABC的一個內(nèi)角.
求作:∠APB=∠ACB.
小明的做法如下:
如圖
①作線段AB的垂直平分線m;
②作線段BC的垂直平分線n,與直線m交于點O;
③以點O為圓心,OA為半徑作△ABC的外接圓;
④在弧ACB上取一點P,連結(jié)AP,BP.
所以∠APB=∠ACB.
老師說:“小明的作法正確.”
請回答:
(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com