若方程與方程有一個(gè)相同的實(shí)數(shù)根,則m值為

[  ]

A.2
B.0
C.-1
D.
答案:A
解析:

設(shè)相等的實(shí)數(shù)根為a,則把a(bǔ)代入兩個(gè)方程得:

解得:m=2

故選A


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•隨州)在一次數(shù)學(xué)活動(dòng)課上,老師出了一道題:
(1)解方程x2-2x-3=0
巡視后,老師發(fā)現(xiàn)同學(xué)們解此道題的方法有公式法、配方法和十字相乘法(分解因式法).接著,老師請(qǐng)大家用自己熟悉的方法解第二道題:
(2)解關(guān)于x的方程mx2+(m-3)x-3=0(m為常數(shù),且m≠0).
老師繼續(xù)巡視,及時(shí)觀察、點(diǎn)撥大家,再接著,老師將第二道題變式為第三道題:
(3)已知關(guān)于x的函數(shù)y=mx2+(m-3)x-3(m為常數(shù))
①求證:不論m為何值,此函數(shù)的圖象恒過(guò)x軸、y軸上的兩個(gè)定點(diǎn)(設(shè)x軸上的定點(diǎn)為A,y軸上的定點(diǎn)為C);
②若m≠0時(shí),設(shè)此函數(shù)的圖象與x軸的另一個(gè)交點(diǎn)為B.當(dāng)△ABC為銳角三角形時(shí),觀察圖象,直接寫出m的取值范圍.
請(qǐng)你也用自己熟悉的方法解上述三道題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩條漸進(jìn)線過(guò)坐標(biāo)原點(diǎn),且與以點(diǎn)為圓心,為半徑的圓相且,雙曲線的一個(gè)頂點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,設(shè)直線過(guò)點(diǎn),斜率為。
(Ⅰ)求雙曲線的方程;
(Ⅱ)當(dāng)時(shí),若雙曲線的上支上有且只有一個(gè)點(diǎn)到直線的距離為,求斜率的值和相應(yīng)的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩條漸進(jìn)線過(guò)坐標(biāo)原點(diǎn),且與以點(diǎn)為圓心,為半徑的圓相且,雙曲線的一個(gè)頂點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,設(shè)直線過(guò)點(diǎn),斜率為。
(Ⅰ)求雙曲線的方程;
(Ⅱ)當(dāng)時(shí),若雙曲線的上支上有且只有一個(gè)點(diǎn)到直線的距離為,求斜率的值和相應(yīng)的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩條漸進(jìn)線過(guò)坐標(biāo)原點(diǎn),且與以點(diǎn)為圓心,為半徑的圓相且,雙曲線的一個(gè)頂點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,設(shè)直線過(guò)點(diǎn),斜率為。
(Ⅰ)求雙曲線的方程;
(Ⅱ)當(dāng)時(shí),若雙曲線的上支上有且只有一個(gè)點(diǎn)到直線的距離為,求斜率的值和相應(yīng)的點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省盤錦市九年級(jí)第一次中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,有一個(gè)可以自由轉(zhuǎn)動(dòng)的圓形轉(zhuǎn)盤,被平均分成四個(gè)扇形,四個(gè)扇形內(nèi)

分別標(biāo)有數(shù)字1、2、-3、-4.指針固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,指針?biāo)干刃蔚玫较?/p>

應(yīng)位置上的數(shù)字(若指針恰好指在分界線上,則該次不計(jì),重新轉(zhuǎn)動(dòng)一次,直至指針落在扇

形內(nèi)).

1.若將轉(zhuǎn)盤轉(zhuǎn)動(dòng)一次,求得到負(fù)數(shù)的概率;

2.若將轉(zhuǎn)盤轉(zhuǎn)動(dòng)兩次,每一次停止轉(zhuǎn)動(dòng)后,指針指向的扇形內(nèi)的數(shù)字分別記為a、b.請(qǐng)你用列表法或樹(shù)狀圖求a與 b都是方程的解的概率.

【解析】

3.讓負(fù)數(shù)的個(gè)數(shù)除以數(shù)的總個(gè)數(shù)即可;

4.求出方程的解,根據(jù)列表法或樹(shù)狀圖求進(jìn)行解答

 

查看答案和解析>>

同步練習(xí)冊(cè)答案