【題目】如圖,P是等腰直角△ABC外一點,把BP繞點B順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
【答案】B
【解析】解:如圖,連接AP,∵BP繞點B順時針旋轉(zhuǎn)90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵BP=BP′,∠ABP=∠CBP′,AB=BC,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,連接PP′,則△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,設(shè)P′A=x,則AP=3x,根據(jù)勾股定理,PP′===x,∴PP′=PB=x,解得PB=2x,∴P′A:PB=x:2x=1:2.故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列4個結(jié)論:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正確結(jié)論的有( 。
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,AB是⊙O的弦,斜邊AC交⊙O于點D,且AD=DC,延長CB交⊙O于點E.
(1)圖1的A、B、C、D、E五個點中,是否存在某兩點間的距離等于線段CE的長?請說明理由;
(2)如圖2,過點E作⊙O的切線,交AC的延長線于點F.
①若CF=CD時,求sin∠CAB的值;
②若CF=aCD(a>0)時,試猜想sin∠CAB的值.(用含a的代數(shù)式表示,直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( 。
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,a),B(﹣1,2)是一次函數(shù)y1=kx+b與反比例函數(shù)y2=(m<0)圖象的兩個交點,AC⊥x軸于C.
(1)求出k,b及m的值.
(2)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)y1>y2時,x的取值范圍是 ________.
(3)若P是線段AB上的一點,連接PC,若△PCA的面積等于,求點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B是切點,點C是⊙O上異于A、B的一點,若∠P=40°,則∠ACB的度數(shù)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形一個角的平分線分矩形一邊為2cm和3cm兩部分,則這個矩形的面積為( )
A.10cm2B.15cm2C.12cm2D.10cm2或15cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°
(1)若點C在優(yōu)弧BD上,求∠ACD的大;
(2)若點C在劣弧BD上,直接寫出∠ACD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com