19.如圖,直線與y軸的交點(diǎn)是(0,-3),當(dāng)x<0時(shí),y的取值范圍是y>-3.

分析 直接根據(jù)直線與y軸的交點(diǎn)是(0,-3)即可得出結(jié)論.

解答 解:由函數(shù)圖象可知,當(dāng)x<0時(shí),y>-3.
故答案為:y>-3.

點(diǎn)評(píng) 本題考查的是一次函數(shù)函數(shù)的性質(zhì),根據(jù)函數(shù)圖象求出y的取值范圍是解答此題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.解方程或方程組:
(1)$\left\{\begin{array}{l}{\frac{m-1}{3}=\frac{2n+3}{4}}\\{4m-3n=7}\end{array}\right.$            
(2)$\frac{5-x}{x-3}$+$\frac{1}{3-x}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,數(shù)軸表示的不等式的解集是( 。
A.x>-1B.x<0C.x≤2D.x<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,AB=AC=3,BC=2,求:
(1)△ABC的面積S△ABC及AC邊上的高BE;
(2)△ABC的內(nèi)切圓的半徑r;
(3)△ABC的外接圓的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列計(jì)算正確的是(  )
A.2x2-4x2=-2B.3x+x=3x2C.3x•x=3x2D.4x6÷2x2=2x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.解二元一次方程組
(1)$\left\{\begin{array}{l}{3x+y=1}\\{2x-3y=8}\end{array}\right.$                                
(2)$\left\{\begin{array}{l}\frac{x}{5}-\frac{y}{2}=5\\ \frac{x}{2}+\frac{y}{3}=3\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算或解方程:
(1)${(\sqrt{5}-2)^2}+(\sqrt{5}+1)(\sqrt{5}+3)$
(2)$(3\sqrt{12}-2\sqrt{\frac{1}{3}}+\sqrt{48})÷2\sqrt{3}+(\sqrt{\frac{1}{3}})^{2}$
(3)(x-5)2=2(5-x)              
(4)2x2-4x-6=0(用配方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解方程:
(1)$\left\{\begin{array}{l}{2x+3y=16}\\{x+4y=13}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=2}\\{3x-4y=-7}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)求出線段AB,曲線CD的解析式,并寫(xiě)出自變量的取值范圍;
(2)開(kāi)始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

同步練習(xí)冊(cè)答案