如圖,在Rt△ABC中,∠A=90°,AB=AC=8,點E為AC的中點,點F在底邊BC上,且FE⊥BE,則△CEF的面積是( )

A.16
B.18
C.6
D.7
【答案】分析:過點E作底邊BC上的高ED,由△BCE的面積,可求ED的長;在△BEF中,根據(jù)三角形面積求法,可求BF的長,進(jìn)而求出CF的長.再根據(jù)S△CEF=FC×ED求解即可.
解答:解:過點E作ED⊥BC交BC于點D.
設(shè)EF的長為x,
在Rt△ABC中,∠A=90°,AB=AC=8,點E為AC的中點,
∴BC=16,BE==
S△BCE=S△ABC=×AB×AC=96,
∵S△BCE=BC×ED,
∴ED=
在△BEF中,S△BEF=BE×EF=BF×ED,即x=×
解得:x=,BF==,
∴CF=BC-BF=,
∴S△CEF=CF×ED=××=16.
故選A.
點評:考查綜合應(yīng)用解直角三角形、直角三角形性質(zhì)進(jìn)行邏輯推理能力和運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運(yùn)動,到點B停止.點P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運(yùn)動時間為t(s).
(1)當(dāng)點P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案