分析 通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,設(shè)EC=x,由勾股定理表示出EF、CG,再通過比較可以得出結(jié)論.
解答 解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
$\left\{\begin{array}{l}{AE=AF}\\{AB=AD}\end{array}\right.$,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF(故①正確).
∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°(故②正確),
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故③正確).
設(shè)EC=x,由勾股定理,得
EF=$\sqrt{2}$x,CG=$\frac{\sqrt{2}}{2}$x,
AG=AEsin60°=EFsin60°=2×CGsin60°=$\frac{\sqrt{6}}{2}$x,
∴AC=$\frac{\sqrt{2}x+\sqrt{6}x}{2}$,
∴AB=$\frac{\sqrt{3}x+x}{2}$,
∴BE=$\frac{\sqrt{3}x+x}{2}$-x=$\frac{\sqrt{3}x-x}{2}$,
∴BE+DF=$\sqrt{3}$x-x≠$\sqrt{2}$x.(故④錯(cuò)誤).
故答案為:①②③.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等邊三角形的性質(zhì)的運(yùn)用,解答本題時(shí)運(yùn)用勾股定理的性質(zhì)解題時(shí)關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com