【題目】已知直角三角板和直角三角板,,,
.
(1)如圖1,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉.當平分時,求的度數(shù);
(2)在(1)的條件下,繼續(xù)旋轉三角板,猜想與有怎樣的數(shù)量關系?并利用圖2所給的情形說明理由;
(3)如圖3,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉.當落在內部時,直接寫出與的數(shù)量關系.
【答案】(1);(2), 理由見解析;(3).
【解析】
(1)利用角平分線的定義求出∠ACF=45°,然后利用余角的性質求解即可;
(2)依據(jù)同角的余角相等即可求解;
(3)∠ACD與∠BCF都與∠ACF關系緊密,分別表示它們與∠ACF的關系即可求解.
(1)∵CF是∠ACB的平分線,∠ACB=90°,
∴∠ACF=90°÷2=45°,
又∵∠FCE=90°,
∴∠ACE=∠FCE﹣∠ACF=90°﹣45°=45°;
(2)∵∠BCF+∠ACF=90°,
∠ACE+∠ACF=90°,
∴∠BCF=∠ACE;
(3)∵∠FCA=∠FCD﹣∠ACD=60°﹣∠ACD,
∠FCA=∠ACB﹣∠BCF=90°﹣∠BCF,
∴60°﹣∠ACD=90°﹣∠BCF,
∠ACD=30°﹣∠BCF.
科目:初中數(shù)學 來源: 題型:
【題目】某校開設了豐富多彩的實踐類拓展課程,分別設置了體育類、藝術類、文學類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學生喜愛的拓展課類別,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調查了多少人?
(2)請將條形統(tǒng)計圖補充完整
(3)求文學類課程在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(4)若該校有1500名學生,請估計喜歡體育類拓展課的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;
(2)函數(shù)y=2x2-bx.
①若其不變長度為零,求b的值;
②若1≤b≤3,求其不變長度q的取值范圍;
(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先填寫表,通過觀察后再回答問題:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | x | 1 | y | 100 | …… |
(1)表格中,x=_________,y=_________
(2)從表格中探究a與數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知,則≈___________
②已知,若,用含m的代數(shù)式表示b,則b=___________
(3)試比較與a的大小(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 和△BDE 都是等邊三角形,A、B、D 三點共線.下列結論:①AB=CD;②BF=BG;③HB 平分∠AHD;④∠AHC=60°,⑤△BFG 是等邊三角形.其中正確的有____________(只填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com