已知,在Rt△ABC中,BD為斜邊AC上的中線,若∠A=35°,則∠DBC=________.

55°
分析:根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AD=BD,再根據(jù)等邊對(duì)等角可得∠ABD=∠A,然后列式求解即可.
解答:解:∵BD為斜邊AC上的中線,
∴AD=BD,
∴∠ABD=∠A=35°,
∴∠DBC=90°-∠ABD=90°-35°=55°.
故答案為:55°.
點(diǎn)評(píng):本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠ACB=90°,AC=BC=4,M是邊AB的中點(diǎn),E、G分別是邊AC、BC上的一點(diǎn),∠EMG=45°,AC與MG的延長線相交于點(diǎn)F.
(1)在不添加字母和線段的情況下寫出圖中一定相似的三角形,并證明其中的一對(duì);
(2)連接結(jié)EG,當(dāng)AE=3時(shí),求EG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,∠A=30°,b=2
3
,解這個(gè)直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6cm;D為AC上一點(diǎn)(不與A、C不精英家教網(wǎng)重合),過D作DQ⊥AC(DQ與AB在AC的同側(cè));點(diǎn)P從D點(diǎn)出發(fā),在射線DQ上運(yùn)動(dòng),連接PA、PC.
(1)當(dāng)PA=PC時(shí),求出AD的長;
(2)當(dāng)△PAC構(gòu)成等腰直角三角形時(shí),求出AD、DP的長;
(3)當(dāng)△PAC構(gòu)成等邊三角形時(shí),求出AD、DP的長;
(4)在運(yùn)動(dòng)變化過程中,△CAP與△ABC能否相似?若△CAP與△ABC相似,求出此時(shí)AD與DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:在Rt△ABC中,∠C=90°,AC=BC,M是AC的中點(diǎn),連接BM,CF⊥MB,F(xiàn)是垂足,延長CF交AB于點(diǎn)E.求證:∠AME=∠CMB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在Rt△ABC中,∠C=90°,點(diǎn)O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC、AB分別交于點(diǎn)D、E,且∠CBD=∠A.
(1)觀察圖形,猜想BD與⊙O的位置關(guān)系:
相切
相切
;
(2)證明第(1)題的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案