【題目】在平面直角坐標系中,、,將點繞點順時針旋轉(zhuǎn)得到點,則過點的反比例函數(shù)關(guān)系式為( )
A.B.C.D.
【答案】C
【解析】
作BD⊥軸于D,CE⊥軸于E,證得Rt△ABDRt△CAE,求得點C的坐標為(6,2),即可求得過點C的反比例函數(shù)關(guān)系式.
作BD⊥軸于D,CE⊥軸于E,
∵A(3,0)、B(1,3),
∴AO=3,DO=1,BD=3,則AD=2,
根據(jù)旋轉(zhuǎn)的性質(zhì)得:∠BAC=90,AB=AC,
∴∠B+∠BAD=90,∠CAE+∠BAD=90,
∴∠B=∠CAE,
在Rt△ABD和Rt△CAE中,
,
∴Rt△ABDRt△CAE,
∴AD=CE=2,BD=AE=3,則EO=AE+AO=6,
∴點C的坐標為(6,2),
設(shè)過點的反比例函數(shù)關(guān)系式為,
∴,
反比例函數(shù)關(guān)系式為:.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點為原點,直線(為常數(shù),且)經(jīng)過點,交軸于點,已知點的坐標為
求的值;
過點作軸,垂足為點,點在的延長線上,連接,且在線段上分別取點使得,連接,設(shè)點的縱坐標為,的面積為,求與之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
在(2)的條件下,連接,當時,點在線段上,連接且.求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】投石機是古代的大型攻城武器,是數(shù)學(xué)、工程、物理等復(fù)雜學(xué)科相互融合的應(yīng)用(如圖(1)).在我國《元史·亦思馬因傳》中對這種投石機就有過記載(如圖(2)).
圖(3)是圖(1)中人工投石機的側(cè)面示意圖,炮架的橫向支架均與地面相互平行,已知米,炮軸距地面4.5米,,炮梢頂端點能到達水平地面,最高點能到達點處,且旋轉(zhuǎn)的夾角(點,,,在同一平面內(nèi)),求點到水平地面的距離.(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七、八年級學(xué)生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學(xué)生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點是的內(nèi)部一點,連接、和,如果、和中有兩個角相等,則稱是的“等心”.特別地,若這三個角都相等,則稱是的“恒等心”.
(1)在等邊中,點是恒等心,,則點到的距離是_______;
(2)如圖2,在中,,點是的外接圓外一點,連接,交于點,試判斷是不是的“等心”,并說明理由;
(3)如圖3,分別以銳角的邊、為邊向外做等邊和等邊,和相交于點,求證:點是的“恒等心”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】濟南某中學(xué)在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(l)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù) .
(3)請估計全校共征集作品的什數(shù).
(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“食品安全”受到全社會的廣泛關(guān)注,武漢市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計圖中“了解”部分所對應(yīng)扇形的圓心角為 ;
(2)若從對食品安全知識達到“了解”程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,恰好抽到1個男生和1個女生的概率為 ;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對食品安全知識達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標系中的點P和圖形M,給出如下定義:Q為圖形M上任意一點,如果兩點間的距離有最大值,那么稱這個最大值為點P與圖形M間的開距離,記作.已知直線與x軸交于點A,與y軸交于點B,的半徑為1.
(1)若,
①求的值;
②若點C在直線上,求的最小值;
(2)以點A為中心,將線段順時針旋轉(zhuǎn)得到,點E在線段組成的圖形上,若對于任意點E,總有,直接寫出b的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com