如圖所示,矩形ABCD的長、寬分別為8cm和4cm,點E、F分別在AB、BC上,且均從點B開始,以1cm/s的速度向B-A-D和B-C-D的方向運動,到達D點停止.則線段EF的長ycm關于時間ts函數(shù)的大致圖象是


  1. A.
  2. B.
  3. C.
  4. D.
AC
分析:由于矩形ABCD的長、寬分別為8cm和4cm,點E、F分別在AB、BC上,且均從點B開始,以1cm/s的速度向B-A-D和B-C-D的方向運動,故應分當0≤t≤4s,4s<t≤8s,8s<t≤12s三種情況進行討論.
解答:當0≤t≤4s時,
∵點B開始以1cm/s的速度運動,
∴BF=t,BE=t,
∴EF=t;
當4s<t≤8s時,
∵此時點E在線段AD上,點F在線段BC上,
∴EF為定值;
當8s<t≤12s時,
∵點E在線段AD上,點F在線段CD上,
∴DE=12-t,DF=12-t,
∴EF==12-t,
∴只有A符合題意.
故選A.
點評:本題考查的是動點問題的函數(shù)圖象,在解答此類問題時要注意進行分類討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖①,在平面直角坐標系中,已知△ABC是等邊三角形,點B的坐標為(12,0),動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在x軸上.
(1)當t為何值時,點M與點O重合;
(2)求點P坐標和等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在△AOB內部作如圖②所示的矩形ODEF,點E在線段AB上.設等邊△PMN和矩形ODEF重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當△ABC滿足
∠BAC=150°
條件時,四邊形DAEF是矩形;
②當△ABC滿足
AB=AC≠BC
條件時,四邊形DAEF是菱形;
③當△ABC滿足
∠BAC=60°
條件時,以D、A、E、F為頂點的四邊形不存在.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖①在矩形ABCD中,動點P從點B出發(fā),沿著BC、CD、DA運動到點A停止,設點P運動的路程為x,△ABP的面積為y,如果y與x的函數(shù)圖象如圖②所示,則△ABC的周長為
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是等邊三角形,點O為是AC的中點,OB=12,動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在直線OB上,取OB的中點D,以OD為邊在△AOB內部作如圖所示的矩形ODEF,點E在線段AB上.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)設等邊△PMN和矩形ODE F重疊部分的面積為S,請求你直接寫出當0≤t≤2秒時S與t的函數(shù)關系式,并寫出對應的自變量t的取值范圍;
(4)點P在運動過程中,是否存在點M,使得△EFM是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,在△ABC中,AB=AC,∠A<90°,邊BC、CA、AB的中點分別是D、E、F,則四邊形AFDE是( 。

查看答案和解析>>

同步練習冊答案