如圖,在△ABD中,∠ABC=45゜,AC、BF為高,AC、BF相交于E點(diǎn).
(1)求證:BE=AD; 
(2)過(guò)C點(diǎn)作CM∥AB交AD于M點(diǎn),連EM,求證:BE=AM+EM.
分析:(1)求出∠CAD=∠EBC,∠ACD=∠BCE,AC=BC,證出△BCE≌△ACD即可;
(2)求出CE=CD,∠ECM=∠DCM,證△ECM≌△DCM,推出DM=ME,即可得出答案.
解答:證明:(1)∵AC、BF是高,
∴∠BCE=∠ACD=∠AFE=90°,
∵∠AEF=∠BEC,∠CAD+∠D+∠ACD=180°,∠EBC+∠BCE+∠BEC=180°,
∴∠DAC=∠EBC,
∵∠ACB=90°,∠ABC=45°,
∴∠BAC=45°=∠ABC,
∴BC=AC,
在△BCE和△ACD中
∠BCE=∠ACD
BC=AC
∠EBC=∠DAC

∴△BCE≌△ACD(ASA),
∴BE=AD.

(2)∵CM∥AB,
∴∠MCE=∠BAC=45°,
∵∠ACD=90°,
∴∠MCD=45°=∠MCE,
∵△BCE≌△ACD,
∴CE=CD,
在△CEM和△CDM中
CE=CD
∠ECM=∠DCM
CM=CM

∴△CEM≌△CDM(SAS),
∴ME=MD,
∴BE=AD=AM+DM=AM+ME,
即BE=AM+EM.
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,平行線(xiàn)性質(zhì),三角形的內(nèi)角和定理,垂直定義,等腰三角形的性質(zhì)和判定的應(yīng)用,主要考查學(xué)生綜合運(yùn)用定理進(jìn)行推理的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABD中,AB=AD,AO平分∠BAD,過(guò)點(diǎn)D作AB的平行線(xiàn)交AO的延長(zhǎng)線(xiàn)于點(diǎn)C,精英家教網(wǎng)連接BC.
(1)求證:四邊形ABCD是菱形;
(2)如果OA,OB(OA>OB)的長(zhǎng)(單位:米)是一元二次方程x2-7x+12=0的兩根,求AB的長(zhǎng)以及菱形ABCD的面積;
(3)若動(dòng)點(diǎn)M從A出發(fā),沿AC以2m/S的速度勻速直線(xiàn)運(yùn)動(dòng)到點(diǎn)C,動(dòng)點(diǎn)N從B出發(fā),沿BD以1m/S的速度勻速直線(xiàn)運(yùn)動(dòng)到點(diǎn)D,當(dāng)M運(yùn)動(dòng)到C點(diǎn)時(shí)運(yùn)動(dòng)停止.若M、N同時(shí)出發(fā),問(wèn)出發(fā)幾秒鐘后,△MON的面積為
14
m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABD中,∠ADB=90°,C是BD上一點(diǎn),若E、F分別是AC、AB的中點(diǎn),△DEF的面積為3.5,則△ABC的面積為
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABD中,∠B=90°,C是BD上一點(diǎn),DC=10,∠ADB=45°,∠ACB=60°,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•溧水縣一模)如圖,在△ABD中,∠A=∠B=30°,以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O交AB于C.
(1)判斷直線(xiàn)BD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)連接CD,若CD=5,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案